

 Navigation

 	
 index

 	workshops latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/workshops/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/workshops/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	workshops latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_images/hist2.png
20

15

here’s your y-axis title
10

5

NOTES
CAPTION

TITLE
SUBTITLE

4
Here'’s your x-axis title

6

_images/linegraph2.png
70

1900

1920 1940
Year

1960

1980 2000

Life expectancy, white females
Life expectancy, black females

Life expectancy, white males
Life expectancy, black males

_static/file.png

_images/unnamed-chunk-61.png
Admission predicted from Sex

s

i
:
I

_static/minus.png

_images/linepalette.png
Line pattern palette

solid

———————————————————————————— dash

longdash_dot
dot

— longdash

______________________ dash_dot

shortdash
.................................. shortdash_dot

blank

_static/comment.png

_images/effects1.png
hypev

hypev

age_p effect plot

sex effect plot

02

20 % 40 50 8 70 8

age p
sleep effect plot

hypev

030 - F
029 E
028 - F
027 E

sex

026
024
022
020 -
0.8
0.6 -

20 30 40 50 6 70 8
bmi

_static/down-pressed.png

_images/unnamed-chunk-2.png
118543 118543

sios sios
P(SIDS) = 1/(8543x8543) = 1/73 million

_static/down.png

_images/msymbol_mcolor.png
100000 150000

Per Capita Income

50000

Comparison of Per Capita Income
and Violent Crime Rate at Tract level

0 500 1000 1500
Violent Crime Rate
Source: National Neighborhood Crime Study 2000

_static/plus.png

_images/unnamed-chunk-63.png
Admission imdiaed from Sex and Deﬁnmem

1o 1,001.001.001.001.004.g9
0.76
0.640.63 0.640.630.660.67
05+

0.340. 0.360.370 340,
340,33 4033 ,,

40-0.000.000.000.000.00F; B -
5 0.24
3 -0.340.33
£ 05~
2 064063
2 107 1.001.001.001.001.004.9
] .
g 066065 0.660.650.640.68” "¢

0.360.35 .350.360.35,
ol 24 0340350 0.26

00-0,000.000.000.000.008 007,

360,357 2°

o5
-0.660.65

A B C D EF A B C oD EF
Department

a predicion
a emr
a actal

_static/ajax-loader.gif

_images/econScatter10.png
Corruption and Human development

Asia & Middle East & — Rz =529
OO0 O Omwpd,
O Americas O Eastern Europe © Africa
o Norway

Urited Staes Gerpany

& New Zealand

Greeceg, O ltaly

Best)

. Argentina O
T o8 &
S
No7
<
E
=06 o o
5 o OF g South Afiica
g J o cape Vage
Sos Myanmal
E Bhut
H ®g & o utan
3 Hudan 00 o [
g% z Rwanda
g Afghanistan em
Zoo o 00
z 6o
Congo
02
1 2 3 4 5 6 7 5 N ”

Sources: Transparency InternationaluhiBwar Rievel opteentBepqrio-least corrupt)

_images/statesCorr1.png
csat

950 1000 1050 1100

850 900

o
P o o
o o
o g™oo
o oo
o
o
o
o
o o
o o° o
° o ®
o ®o oo
o
° o

_images/lineGraph1.png
1900 1920 1940 1960 1980 2000
Year

Life expectancy, white males Life expectancy, black males

_images/hist1.png
Percent

10

15

NOTES
CAPTION

TITLE
SUBTITLE

4
F1. What is your age?

6

_images/unnamed-chunk-62.png
Probabilty of Admission

0.64

00~ 000

064

10-- 1,00

0.64

0.36

00

0.63

0.00

-0.63

1.00

063

0.37

ot Adited
035 034
000 0.0
035 -0.34
Admited
100 1.00
065 066
035 0.34
¢ o

Department

Admission predicted from department

025
0.00
0.25

1.00
075

025

484

688

0.07

a predicton
a emr
a actal

_images/unnamed-chunk-3.png
sios

1121700

Flomicide.

sios
1121700

jomicide

Homicid
P(SIDS) = 1/(8543x8543) = 1/73 million 121700

P(Homicide) = 1/(21700x21700) = 1/471 million

P(Homicide | deaths) = 1/((1/470890000)/(1/72982849)) = 1/6 Fiomicide

_images/StataInterface.png
Eds

i Stata/MP 12.1 - newgss.dta

B H

00«

2 Intro to Stata.do

@EHESE GRE

Open Save Print Do-file Editor Data Editor Data Browser Search Help Open Prnt Find Show Run Do
Revie Q | Resul Q | Variah| =Q [EG i S .
Comma | 8 Name | Label 7+this is a preanble. always have it!x/ =
1 use ne marital | marital status .
*intro to stata
2 sum ha. age age of respondent sta zahn Fall 2011
3 tab sex educ highest year of sc. FRevised: 10/21/11
4 hist age sex respondents sex
inc respondents income n n
et e DO-file editor
region
lookfor incone
label define sexlabel 1 “Male" 2 “Female"
codebook_sex
. ; label value sex "sexlabel”
Results window
(@] label variable region “Area of the United States"
rename region regiond
[e) © codebook marital
. cC #+Start your Stata session
© . use newgss.dta = € "~/Statalntro” /xchange directorys/
c cum ey ; —
= Graph (Graph)
Variable ‘ Obs Mean Std. Dev. Min Max = i
; Y S— ENE I |
Pronertie: & G =| open Save Print Copy Rename Graph Editor
happy 217 1.806452 .6080896 1 3 ¥ Variables GJ
; Name
. tab sex Label 34
Type
_ raph Window
> sex Freq. Percent cum. Notes ___2 o
Yo
Y iename S s 3
q) male 14 52.53 52.53 Label
m female 103 47.47 100.00 emib ’ (U
orarmr >
Total 217 100.00 Size 233k
Memory cant
. hist age
(bin=14, start=18, width=4.2142857)
Commz
Command Window 4
age of respondent
] /Users/izahn/Documents/Wark /I0SS/Classes /Statalntro/OQLD i

_static/up-pressed.png

_images/twowayby.png
Per capita income in 1999

S New England Middle Atlantic East North Central
S |

Slee . °

§ i i o o

g . [

o

S West North Central South Atlantic East South Central
S |

g e

8

o . e

s West South Central Mountain Pacific

S

g .

8

g ..

o | . 5 .

0 500 1000 1500 2000 O 500 1000 1500 2000 O
Sum of numbers of violent crimes
Graphs by Division

500 1000 1500 2000

Stata/StataStatGraph/StataStatGraph.html

 Navigation

 		
 index

 		workshops latest documentation »

Introduction

Download workshop materials

		Lab computer log in:
		USERNAME: dataclass

		PASSWORD: on the board to your left

		Download materials from http://tutorials.iq.harvard.edu/Stata/StataStatGraph.zip

		Extract materials from the StataStatGraph.zip file

		Launch Stata and open the StataStatGraph.do file

Materials and setup

Laptop users: you will need a copy of Stata installed on your machine

Lab computer users: log in using your Athena user name and password

Everyone:

		Open a web browser and download class materials from http://tutorials.iq.harvard.edu/Stata/StataStatGraph.zip.

		Extract the downloaded zip file and move the StataStatistics folder to your Desktop.

		Start the Stata program and open the StataStatistics.do file.

Organization

		Please feel free to ask questions at any point if they are relevant to the current topic (or if you are lost!)

		There will be a Q&A after class for more specific, personalized questions

		Collaboration with your neighbors is encouraged

		If you are using a laptop, you will need to adjust paths accordingly

		Make comments in your Do-file rather than on hand-outs

		Save on flash drive or email to yourself

Fitting models in Stata

Today’s Dataset

		We have data on a variety of variables for all 50 states

		Population, density, energy use, voting tendencies, graduation rates, income, etc.

		We’re going to be predicting SAT scores

		Univariate Regression: SAT scores and Education Expenditures

		Does the amount of money spent on education affect the mean SAT score in a state?

		Dependent variable: csat

		Independent variable: expense

Opening Files in Stata

		Look at bottom left hand corner of Stata screen
		This is the directory Stata is currently reading from

		Files are located in the StataStatistics folder on the Desktop

		Start by telling Stata where to look for these

 // change directory
 cd "~/tutorials/Stata/StataStatGraph"

set more off

cd "~/tutorials/Stata/StataStatGraph"
/nfs/www/edu-harvard-iq-tutorials/Stata/StataStatGraph

		Use dir to see what is in the directory:

 dir
 cd dataSets
 dir
 cd ..

dir

total 8
drwxr-sr-x. 2 izahn tutorwww 4096 Oct 22 21:59 dataSets/
drwxr-sr-x. 3 izahn tutorwww 4096 Oct 22 21:59 images/
cd dataSets
/nfs/www/edu-harvard-iq-tutorials/Stata/StataStatGraph/dataSets
dir

total 21008
-rwxr-xr-x. 1 izahn tutorwww 21103444 Oct 22 21:59 NatNeighCrimeStudy.dta*
-rwxr-xr-x. 1 izahn tutorwww 8977 Oct 22 21:59 states.dta*
-rwxr-xr-x. 1 izahn tutorwww 298191 Oct 22 21:59 TimePollPubSchools.dta*
cd ..
/nfs/www/edu-harvard-iq-tutorials/Stata/StataStatGraph

		Load the data

 // use the states data set
 use dataSets/states.dta

use dataSets/states.dta
(U.S. states data 1990-91)

Steps for Running Regression

		Examine descriptive statistics

		Look at relationship graphically and test correlation(s)

		Run and interpret regression

		Test regression assumptions

Univariate regression

Univariate Regression: Preliminaries

		We want to predict csat scores from expense

		First, let’s look at some descriptives

 // generate summary statistics for csat and expense
 sum csat expense

sum csat expense

 Variable | Obs Mean Std. Dev. Min Max
-------------+---
 csat | 51 944.098 66.93497 832 1093
 expense | 51 5235.961 1401.155 2960 9259

Univariate Regression Preliminaries

		We want to predict csat scores from expense

		First, let’s look at some descriptives

 // look at codebok
 codebook csat expense

codebook csat expense

csat Mean composite SAT score

 type: numeric (int)

 range: [832,1093] units: 1
 unique values: 45 missing .: 0/51

 mean: 944.098
 std. dev: 66.935

 percentiles: 10% 25% 50% 75% 90%
 874 886 926 997 1024

expense Per pupil expenditures prim&sec

 type: numeric (int)

 range: [2960,9259] units: 1
 unique values: 51 missing .: 0/51

 mean: 5235.96
 std. dev: 1401.16

 percentiles: 10% 25% 50% 75% 90%
 3782 4351 5000 5865 6738

Univariate Regression Preliminaries

		Next, view relationship graphically

		Scatterplots work well for univariate relationships

 // graph expense by csat
 twoway scatter expense csat

Univariate Regression Preliminaries

		Next look at the correlation matrix

 // correlate csat and expense
 pwcorr csat expense, star(.05)

pwcorr csat expense, star(.05)

 | csat expense
-------------+------------------
 csat | 1.0000
 expense | -0.4663* 1.0000

		Not very interesting with only one predictor

Univariate Regression: SAT scores and Education Expenditures

 regress csat expense

regress csat expense

 Source | SS df MS Number of obs = 51
-------------+---------------------------------- F(1, 49) = 13.61
 Model | 48708.3001 1 48708.3001 Prob > F = 0.0006
 Residual | 175306.21 49 3577.67775 R-squared = 0.2174
-------------+---------------------------------- Adj R-squared = 0.2015
 Total | 224014.51 50 4480.2902 Root MSE = 59.814

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 expense | -.0222756 .0060371 -3.69 0.001 -.0344077 -.0101436
 _cons | 1060.732 32.7009 32.44 0.000 995.0175 1126.447
--

Linear Regression Assumptions

		Assumption 1: Normal Distribution

		The errors of regression equation are normally distributed

		Assumption 2: Homoscedasticity (The variance around the regression line is the same for all values of the predictor variable)

		Assumption 3: Errors are independent

		Assumption 4: Relationships are linear

Homoscedasticity

Testing Assumptions: Normality

		A simple histogram of the residuals can be informative

 // graph the residual values of csat
 predict resid, residual
 histogram resid, normal

predict resid, residual
histogram resid, normal
(bin=7, start=-131.81111, width=38.329487)

Testing Assumptions: Homoscedasticity

 rvfplot

rvfplot

Multiple regression

Multiple Regression

		Just keep adding predictors

		Let’s try adding some predictors to the model of SAT scores

		income :: % students taking SATs

		percent :: % adults with HS diploma (high)

Multiple Regression Preliminaries

		As before, start with descriptive statistics and correlations

 // descriptive statistics and correlations
 sum income percent high
 pwcorr csat expense income percent high

sum income percent high

 Variable | Obs Mean Std. Dev. Min Max
-------------+---
 income | 51 33.95657 6.423134 23.465 48.618
 percent | 51 35.76471 26.19281 4 81
 high | 51 76.26078 5.588741 64.3 86.6
pwcorr csat expense income percent high

 | csat expense income percent high
-------------+---
 csat | 1.0000
 expense | -0.4663 1.0000
 income | -0.4713 0.6784 1.0000
 percent | -0.8758 0.6509 0.6733 1.0000
 high | 0.0858 0.3133 0.5099 0.1413 1.0000

Multiple Regression

		regress csat on exense, income, percent, and high

 regress csat expense income percent high

regress csat expense income percent high

 Source | SS df MS Number of obs = 51
-------------+---------------------------------- F(4, 46) = 51.86
 Model | 183354.603 4 45838.6508 Prob > F = 0.0000
 Residual | 40659.9067 46 883.911016 R-squared = 0.8185
-------------+---------------------------------- Adj R-squared = 0.8027
 Total | 224014.51 50 4480.2902 Root MSE = 29.731

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 expense | .0045604 .004384 1.04 0.304 -.0042641 .013385
 income | .4437858 1.138947 0.39 0.699 -1.848795 2.736367
 percent | -2.533084 .2454477 -10.32 0.000 -3.027145 -2.039024
 high | 2.086599 .9246023 2.26 0.029 .2254712 3.947727
 _cons | 836.6197 58.33238 14.34 0.000 719.2027 954.0366
--

Exercise 1: Multiple Regression

Open the datafile, states.dta.

		Select a few variables to use in a multiple regression of your own. Before running the regression, examine descriptive of the variables and generate a few scatterplots.

		Run your regression

		Examine the plausibility of the assumptions of normality and homogeneity

Interactions

Interactions

		What if we wanted to test an interaction between percent & high?

		Option 1: generate product terms by hand

 // generate product of percent and high
 gen percenthigh = percent*high
 regress csat expense income percent high percenthigh

gen percenthigh = percent*high
regress csat expense income percent high percenthigh

 Source | SS df MS Number of obs = 51
-------------+---------------------------------- F(5, 45) = 46.11
 Model | 187430.401 5 37486.0801 Prob > F = 0.0000
 Residual | 36584.1091 45 812.980201 R-squared = 0.8367
-------------+---------------------------------- Adj R-squared = 0.8185
 Total | 224014.51 50 4480.2902 Root MSE = 28.513

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 expense | .0045575 .0042044 1.08 0.284 -.0039107 .0130256
 income | .0887856 1.10374 0.08 0.936 -2.134261 2.311832
 percent | -8.143002 2.516509 -3.24 0.002 -13.21151 -3.074493
 high | .4240906 1.156545 0.37 0.716 -1.905311 2.753492
 percenthigh | .0740926 .0330909 2.24 0.030 .0074441 .1407411
 _cons | 972.525 82.5457 11.78 0.000 806.2695 1138.781
--

Interactions

		What if we wanted to test an interaction between percent & high?

		Option 2: Let Stata do your dirty work

 // use the # sign to represent interactions
 regress csat percent high c.percent#c.high
 // same as . regress csat c.percent##high

regress csat percent high c.percent#c.high

 Source | SS df MS Number of obs = 51
-------------+---------------------------------- F(3, 47) = 77.39
 Model | 186302.091 3 62100.6971 Prob > F = 0.0000
 Residual | 37712.4186 47 802.391885 R-squared = 0.8317
-------------+---------------------------------- Adj R-squared = 0.8209
 Total | 224014.51 50 4480.2902 Root MSE = 28.327

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 percent | -8.15717 2.488388 -3.28 0.002 -13.16316 -3.151179
 high | .6674578 1.082615 0.62 0.541 -1.510482 2.845398
 |
 c.percent#|
 c.high | .0764271 .0324919 2.35 0.023 .0110619 .1417924
 |
 _cons | 974.9354 81.98078 11.89 0.000 810.0113 1139.859
--

Categorical Predictors

		For categorical variables, we first need to dummy code

		Use region as example
		Option 1: create dummy codes before fitting regression model

 // create region dummy codes using tab
 tab region, gen(region)

 //regress csat on region
 regress csat region1 region2 region3

tab region, gen(region)

Geographica |
 l region | Freq. Percent Cum.
------------+-----------------------------------
 West | 13 26.00 26.00
 N. East | 9 18.00 44.00
 South | 16 32.00 76.00
 Midwest | 12 24.00 100.00
------------+-----------------------------------
 Total | 50 100.00

regress csat region1 region2 region3

 Source | SS df MS Number of obs = 50
-------------+---------------------------------- F(3, 46) = 9.61
 Model | 82049.4719 3 27349.824 Prob > F = 0.0000
 Residual | 130911.908 46 2845.91105 R-squared = 0.3853
-------------+---------------------------------- Adj R-squared = 0.3452
 Total | 212961.38 49 4346.15061 Root MSE = 53.347

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 region1 | -63.77564 21.35592 -2.99 0.005 -106.7629 -20.7884
 region2 | -120.5278 23.52385 -5.12 0.000 -167.8788 -73.17672
 region3 | -80.08333 20.37225 -3.93 0.000 -121.0906 -39.07611
 _cons | 1010.083 15.39998 65.59 0.000 979.0848 1041.082
--

Categorical Predictors

		For categorical variables, we first need to dummy code

		Use region as example
		Option 2: Let Stata do it for you

 // regress csat on region using fvvarlist syntax
 // see help fvvarlist for details
 regress csat i.region

regress csat i.region

 Source | SS df MS Number of obs = 50
-------------+---------------------------------- F(3, 46) = 9.61
 Model | 82049.4719 3 27349.824 Prob > F = 0.0000
 Residual | 130911.908 46 2845.91105 R-squared = 0.3853
-------------+---------------------------------- Adj R-squared = 0.3452
 Total | 212961.38 49 4346.15061 Root MSE = 53.347

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 region |
 N. East | -56.75214 23.13285 -2.45 0.018 -103.3161 -10.18813
 South | -16.30769 19.91948 -0.82 0.417 -56.40353 23.78814
 Midwest | 63.77564 21.35592 2.99 0.005 20.7884 106.7629
 |
 _cons | 946.3077 14.79582 63.96 0.000 916.5253 976.0901
--

Exercise 2: Regression, Categorical Predictors, & Interactions

Open the datafile, states.dta.

		Add on to the regression equation that you created in exercise 1 by generating an interaction term and testing the interaction.

		Try adding a categorical variable to your regression (remember, it will need to be dummy coded). You could use region or generate a new categorical variable from one of the continuous variables in the dataset.

Exporting and saving results

Saving and exporting regression tables

		Usually when we’re running regression, we’ll be testing multiple models at a time

		Can be difficult to compare results

		Stata offers several user-friendly options for storing and viewing regression output from multiple models

		First, download the necessary packages:

 // install outreg2 package
 findit outreg2

Saving and replaying

		You can store regression model results in Stata

 // fit two regression models and store the results
 regress csat expense income percent high
 estimates store Model1
 regress csat expense income percent high i.region
 estimates store Model2

regress csat expense income percent high

 Source | SS df MS Number of obs = 51
-------------+---------------------------------- F(4, 46) = 51.86
 Model | 183354.603 4 45838.6508 Prob > F = 0.0000
 Residual | 40659.9067 46 883.911016 R-squared = 0.8185
-------------+---------------------------------- Adj R-squared = 0.8027
 Total | 224014.51 50 4480.2902 Root MSE = 29.731

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 expense | .0045604 .004384 1.04 0.304 -.0042641 .013385
 income | .4437858 1.138947 0.39 0.699 -1.848795 2.736367
 percent | -2.533084 .2454477 -10.32 0.000 -3.027145 -2.039024
 high | 2.086599 .9246023 2.26 0.029 .2254712 3.947727
 _cons | 836.6197 58.33238 14.34 0.000 719.2027 954.0366
--
estimates store Model1
regress csat expense income percent high i.region

 Source | SS df MS Number of obs = 50
-------------+---------------------------------- F(7, 42) = 51.07
 Model | 190570.293 7 27224.3275 Prob > F = 0.0000
 Residual | 22391.0874 42 533.121128 R-squared = 0.8949
-------------+---------------------------------- Adj R-squared = 0.8773
 Total | 212961.38 49 4346.15061 Root MSE = 23.089

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 expense | -.004375 .0044603 -0.98 0.332 -.0133763 .0046263
 income | 1.306164 .950279 1.37 0.177 -.6115765 3.223905
 percent | -2.965514 .2496481 -11.88 0.000 -3.469325 -2.461704
 high | 3.544804 1.075863 3.29 0.002 1.373625 5.715983
 |
 region |
 N. East | 80.81334 15.4341 5.24 0.000 49.66607 111.9606
 South | 33.61225 13.94521 2.41 0.020 5.469676 61.75483
 Midwest | 32.15421 10.20145 3.15 0.003 11.56686 52.74157
 |
 _cons | 724.8289 79.25065 9.15 0.000 564.8946 884.7631
--
estimates store Model2

Saving and replaying

		Stored models can be recalled

 // Display Model1
 estimates replay Model1

estimates replay Model1

Model Model1

 Source | SS df MS Number of obs = 51
-------------+---------------------------------- F(4, 46) = 51.86
 Model | 183354.603 4 45838.6508 Prob > F = 0.0000
 Residual | 40659.9067 46 883.911016 R-squared = 0.8185
-------------+---------------------------------- Adj R-squared = 0.8027
 Total | 224014.51 50 4480.2902 Root MSE = 29.731

--
 csat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 expense | .0045604 .004384 1.04 0.304 -.0042641 .013385
 income | .4437858 1.138947 0.39 0.699 -1.848795 2.736367
 percent | -2.533084 .2454477 -10.32 0.000 -3.027145 -2.039024
 high | 2.086599 .9246023 2.26 0.029 .2254712 3.947727
 _cons | 836.6197 58.33238 14.34 0.000 719.2027 954.0366
--

Saving and replaying

		Stored models can be compared

 // Compare Model1 and Model2 coefficients
 estimates table Model1 Model2

estimates table Model1 Model2

--
 Variable | Model1 Model2
-------------+--------------------------
 expense | .00456044 -.00437502
 income | .44378583 1.3061642
 percent | -2.5330843 -2.9655142
 high | 2.0865991 3.5448038
 |
 region |
 N. East | 80.813342
 South | 33.612251
 Midwest | 32.154215
 |
 _cons | 836.61966 724.82886
--

Exporting into Excel

		Avoid human error when transferring coefficients into tables

		Excel can be used to format publication-ready tables

 outreg2 [Model1 Model2] using csatprediction.xls, replace

outreg2 [Model1 Model2] using csatprediction.xls, replace
~/ado/plus/o/outreg2.ado
csatprediction.xls
dir : seeout

Graphing in Stata

Graphing Strategies

		Keep it simple

		Labels, labels, labels!!

		Avoid cluttered graphs

		Every part of the graph should be meaningful

		Avoid:
		Shading

		Distracting colors

		Decoration

		Always know what you’re working with before you get started
		Recognize scale of data

		If you’re using multiple variables – how do their scales align?

		Before any graphing procedure review variables with codebook, sum, tab, etc.

		HELPFUL STATA HINT: If you want your command to go on multiple lines use /// at end of each line

Terrible Graph

[image:]

Much Better Graph

[image:]

Univariate Graphics

Our First Dataset

		Time Magazine Public School Poll
		Based on survey of 1,000 adults in U.S.

		Conducted in August 2010

		Questions regarding feelings about parental involvement, teachers union, current potential for reform

		Open Stata and call up the datafile for today

 // Step 1: tell Stata where to find data:
 cd "~/StataGraphics/dataSets"
 // Step 2: call up our dataset:
 use TimePollPubSchools.dta

Single Continuous Variables

Example: Histograms

		Stata assumes you’re working with continuous data

		Very simple syntax:
		hist varname

		Put a comma after your varname and start adding options
		bin(#) : change the number of bars that the graph displays

		normal : overlay normal curve

		addlabels : add actual values to bars

Histogram Options

		To change the numeric depiction of your data add these options after the comma
		Choose one: density fraction frequency percent

		Be sure to properly describe your histogram:
		title(insert name of graph)

		subtitle(insert subtitle of graph)

		note(insert note to appear at bottom of graph)

		caption(insert caption to appear below notes)

Histogram Example

 hist F1, bin(10) percent title(TITLE) ///
 subtitle(SUBTITLE) caption(CAPTION) note(NOTES)

[image:]

Axis Titles and Labels

Example: Histograms

		Axis title options (default is variable label):
		xtitle(insert x axis name)

		ytitle(insert y axis name)

		Don’t want axis titles?
		xtitle("")

		ytitle("")

		Add labels to X or Y axis:
		xlabel(insert x axis label)

		ylabel(insert y axis label)

		Tell Stata how to scale each axis
		xlabel(start#(increment)end#)

		xlabel(0(5)100)

		This would label x-axis from 0-100 in increments of 5

Axis Labels Example

 hist F1, bin(10) percent title(TITLE) subtitle(SUBTITLE) ///
 caption(CAPTION) note(NOTES) ///
 xtitle(Here's your x-axis title) ///
 ytitle(here's your y-axis title)

[image:]

Basic Graphing: Single Categorical Variables

		We can also use the hist command for bar graphs
		Simply specify “discrete” with options

		Stata will produce one bar for each level (i.e. category) of variable

		Use xlabel command to insert names of individual categories

 hist F4, title(Racial breakdown of Time Poll Sample) xtitle(Race) ///
 ytitle(Percent) xlabel(1 "White" 2 "Black" 3 "Asian" 4 "Hispanic" ///
 5 "Other") discrete percent addlabels

[image:]

Exercise 1: Histograms Bar Graphs

		Open the datafile, NatNeighCrimeStudy.dta.

		Create a histogram of the tract-level poverty rate (variable name: T_POVRTY).

		Insert the normal curve over the histogram

		Change the numeric representation on the Y-axis to “percent”

		Add appropriate titles to the overall graph and the x axis and y axis. Also, add a note that states the source of this data.

		Open the datafile, TimePollPubSchools.dta

		Create a histogram of the question, “What grade would you give your child’s school” (variable name: Q11). Be sure to tell Stata that this is a categorical variable.

		Format this graph so that the axes have proper titles and labels. Also, add an appropriate title to the overall graph that goes onto two lines. Add a note stating the source of the data.

Next Dataset:

		National Neighborhood Crime Study (NNCS)
		N=9,593 census tracts in 2000

		Explore sources of variation in crime for communities in the United States

		Tract-level data: crime, social disorganization, disadvantage, socioeconomic inequality

		City-level data: labor market, socioeconomic inequality, population change

Bivariate Graphics

The Twoway Family

		twoway is basic Stata command for all twoway graphs

		Use twoway anytime you want to make comparisons among variables

		Can be used to combine graphs (i.e., overlay one graph with another
		e.g., insert line of best fit over a scatter plot

		Some basic examples:

 use NatNeighCrimeStudy.dta
 twoway scatter T_PERCAP T_VIOLNT
 twoway dropline T_PERCAP T_VIOLNT
 twoway lfitci T_PERCAP T_VIOLNT

Twoway and the “by” Statement

 twoway scatter T_PERCAP T_VIOLNT, by(DIVISION)

[image:]

Twoway Title Options

		Same title options as with histogram
		title(insert name of graph)

		subtitle(insert subtitle of graph)

		note(insert note to appear at bottom of graph)

		caption(insert caption to appear below notes)

Twoway Title Options Example

 twoway scatter T_PERCAP T_VIOLNT, ///
 title(Comparison of Per Capita Income ///
 and Violent Crime Rate at Tract level) ///
 xtitle(Violent Crime Rate) ytitle(Per Capita Income) ///
 note(Source: National Neighborhood Crime Study 2000)

		The title is a bit cramped–let’s fix that:

 twoway scatter T_PERCAP T_VIOLNT, ///
 title("Comparison of Per Capita Income" ///
 "and Violent Crime Rate at Tract level") ///
 xtitle(Violent Crime Rate) ytitle(Per Capita Income) ///
 note(Source: National Neighborhood Crime Study 2000)

Twoway Symbol Options

		A variety of symbol shapes are available: use palette symbolpalette to seem them and msymbol() to set them

[image:]

Twoway Symbol Options

 twoway scatter T_PERCAP T_VIOLNT, ///
 title("Comparison of Per Capita Income" ///
 "and Violent Crime Rate at Tract level") ///
 xtitle(Violent Crime Rate) ytitle(Per Capita Income) ///
 note(Source: National Neighborhood Crime Study 2000) ///
 msymbol(Sh) mcolor("red")

[image:]

Overlaying Twoway Graphs

		Very simple to combine multiple graphs…just put each graph command in parentheses
		twoway (scatter var1 var2) (lfit var1 var2)

		Add individual options to each graph within the parentheses

		Add overall graph options as usual following the comma
		twoway (scatter var1 var2) (lfit var1 var2), options

Overlaying Points and Lines

 twoway (scatter T_PERCAP T_VIOLNT) ///
 (lfit T_PERCAP T_VIOLNT), ///
 title("Comparison of Per Capita Income" ///
 "and Violent Crime Rate at Tract level") ///
 xtitle(Violent Crime Rate) ytitle(Per Capita Income) ///
 note(Source: National Neighborhood Crime Study 2000)

Overlaying Points and Labels

 twoway (scatter T_PERCAP T_VIOLNT if T_VIOLNT==1976, ///
 mlabel(CITY)) (scatter T_PERCAP T_VIOLNT), ///
 title("Comparison of Per Capita Income" ///
 "and Violent Crime Rate at Tract level") ///
 xlabel(0(200)2400) note(Source: National Neighborhood ///
 Crime Study 2000) legend(off)

Exercise 2: The TwoWay Family

Open the datafile, NatNeighCrimeStudy.dta.

		Create a basic twoway scatterplot that compares the city unemployment rate (C_UNEMP) to the percent secondary sector low-wage jobs (C_SSLOW)

		Generate the same scatterplot, but this time, divide the plot by the dummy variable indicating whether the city is located in the south or not (C_SOUTH)

		Change the color of the symbol that you use in this scatter plot

		Change the type of symbol you use to a marker of your choice

		Notice in your scatterplot that is broken down by C_SOUTH that there is an outlier in the upper right hand corner of the “Not South” graph. Add the city name label to this marker.

		Review the options available under “help twowayoptions” and change one aspect of your graph using an option that we haven’t already reviewed

More Fun with Twoway Line Graphs

Line Graphs

		Line graphs helpful for a variety of data
		Especially any type of time series data

		We’ll use data on US life expectancy from 1900-1999
		webuse uslifeexp, clear

Line Graphs

 webuse uslifeexp, clear
 twoway (line le_wm year, mcolor("red")) ///
 (line le_bm year, mcolor("green"))

[image:]

 twoway (line (le_wfemale le_wmale le_bf le_bm) year, ///
 lpattern(dot solid dot solid))

[image:]

Stata Graphing Lines

 palette linepalette

[image:]

Exporting Graphs

		From Stata, right click on image and select “save as” or try syntax:
		graph export myfig.esp, replace

		In Microsoft Word: insert >

 picture >

 from file
		Or, right click on graph in Stata and copy and paste into Word

Wrap-up

Help Us Make This Workshop Better

		Please take a moment to fill out a very short feedback form

		These workshops exist for you–tell us what you need!

		http://tinyurl.com/StataRegressionFeedback

Additional resources

		training and consulting
		IQSS workshops: http://projects.iq.harvard.edu/rtc/filter_by/workshops

		IQSS statistical consulting: http://dss.iq.harvard.edu

		Stata resources
		UCLA website: http://www.ats.ucla.edu/stat/Stata/

		Great for self-study

		Links to resources

		Stata website: http://www.stata.com/help.cgi?contents

		Email list: http://www.stata.com/statalist/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_images/Good.png
Unemployment rate

(16+)
10%

9%

8% -

7%

6% |

5% -

4%

3%

L o B L B L

1950 1960 1970 1980
Year

Source: Bureau of Labor Statistics, http:/fwww.bls.gov/data/

_images/Economist1.png
| corruption and human devetopment

QOECD OAmericas O Asia & OCentral & ‘OMiddle East & OSub-Saharan ~ —— R?=56%
e Clmmbuoe Chomanst O
10
» Svm\:m G o ey
o Geep 0 0 0 Q@ &8 B
s W Mo 5 %0 So O oo s Sipore
H &o s
BT o o
i otsana
e ‘South ‘O Cape Verde
- India O Africa
Pos Cbhutan
H Ruanda
fos 8 o
N
=03
coned
02
P o

Comuption PerceptonsIndex 2011 (10=least com)
Sources: Transparency Interational; UN Human Development Report

_images/bargraph.png
w05 Racial breakdown of Time Poll Sample

White Black Asian Hispanic Other
Race

_images/Terrible.png
s DELLARS

S0 MONTH SALES TOTALS

search.html

 Navigation

 		
 index

 		workshops latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/Symbol.png
Symbol palette

®o0 O oh .
L 2] & ph .
AT A Th A
ms O sh []
+ 4 +
X X x

oh

dh

th

sh

(symbols shown at larger than default size)

Stata/StataIntro/StataIntro.html

 Navigation

 		
 index

 		workshops latest documentation »

Introduction

Materials and setup

Laptop users: you will need a copy of Stata installed on your machine. Harvard FAS affiliates can install a licensed version from http://downloads.fas.harvard.edu/download

Lab computer users: log in using

USERNAMEdataclass

PASSWORDon the board to your left

Everyone:

		Find class materials at http://tutorials.iq.harvard.edu/Stata/StataIntro.zip

		Download and extract to your desktop!

Materials and setup

Laptop users: you will need a copy of Stata installed on your machine

Lab computer users: log in using your Athena user name and password

Everyone:

		Find class materials at http://tutorials.iq.harvard.edu/Stata/StataIntro.zip

		Download and extract to your desktop!

Organization

		Please feel free to ask questions at any point if they are relevant to the current topic (or if you are lost!)
		There will be a Q&A after class for more specific, personalized questions

		Collaboration with your neighbors is encouraged

		If you are using a laptop, you will need to adjust paths accordingly

		Make comments in your Do-file rather than on hand-outs
		save on flash drive or email to yourself

Workshop descripton

		This is an introduction to Stata

		Assumes no/very little knowledge of Stata

		Not appropriate for people already well familiar with Stata

		Learning Objectives:
		Familiarize yourself with the Stata interface

		Get data in and out of Stata

		Compute statistics and construct graphical displays

		Compute new variables and transformations

Why stata?

		Used in a variety of disciplines

		User-friendly

		Great guides available on web (as well as in HMDC computer lab library)

		Student and other discount packages available at reasonable cost

Stata interface

[image:]

		Review and Variable windows can be closed (user preference)

		Command window can be shortened (recommended)

Do-files

		You can type all the same commands into the Do-file that you would type into the command window

		BUT...the Do-file allows you to save your commands

		Your Do-file should contain ALL commands you executed – at least all the “correct” commands!

		I recommend never using the command window or menus to make CHANGES to data

		Saving commands in Do-file allows you to keep a written record of everything you have done to your data
		Allows easy replication

		Allows you to go back and re-run commands, analyses and make modifications

Stata help

		Easiest way to get help in Stata - just type help followed by topic or command, e.g., help regress

		Falls back to “search” if command not found

		Generally, if you google “Stata [topic],” you’ll get some helpful hits

		UCLA website: http://www.ats.ucla.edu/stat/Stata/

General Stata command syntax

		Most Stata commands follow the same underlying principles Command varlist, options, e.g., sum var1 var2, detail
		CAUTION - in some cases, if you type a command and don’t specify a variable, Stata will perform the command on all variables in your dataset

		You can find command-specific syntax in the help files

Commenting and formatting syntax

		Start with comment describing your Do-file and use comments throughout

		Single line and block comments

 // comment
 describe var
 /*
 comment block comment block comment block comment
 block comment block comment block
 */

		Use / to break varlists over multiple lines:

 // break commands over multible lines
 describe var1 var2 var2 ///
 var4 var5 var6

Let’s get started

		Launch the Stata program (MP or SE, does not matter unless doing computationally intensive work)
		Open up a new Do-file

		Run our first Stata code!

 // change directory
 cd "C://Users/dataclass/Desktop/StataIntro"
 // start a log file to record your stata session
 log using myStataLog.txt, text replace
 // Pause / resume logging with "log on" / "log off"
 // Close lot with "log close"

How to start every do-file

		Describe what the file does

		Change directory

		Begin log file

		Call up data

		Do stuff: Data manipulation, statistics etc.

		Save data under new name (if making changes to dataset)

Getting data into Stata

Data file commands

		Next, we want to open our data file

		Open/save data sets with “use” and “save”:

 cd dataSets
 // open the gss.dta data set
 use gss.dta
 // saving your data file:
 save newgss.dta, replace
 // the "replace" option tells stata it's OK to
 // write over an existing file

cd dataSets
/nfs/home/I/izahn/StataIntro/dataSets

use gss.dta

save newgss.dta, replace
(note: file newgss.dta not found)
file newgss.dta saved

A note about path names

		If your path has no spaces in the name (that means all directories, folders, file names, etc. can have no spaces), you can write the path as is

		If there are spaces, you need to put your pathname in quotes

		Best to get in the habit of quoting paths

Where’s my data?

		Data editor (browse)

		Data editor (edit)
		Using the data editor is discouraged (why?)

		Always keep any changes to your data in your Do-file

		Avoid temptation of making manual changes by viewing data via the browser rather than editor

What if my data is not a Stata file?

		Import delimited text files

 /* import data from a .csv file */
 insheet using gss.csv, clear
 /* save data to a .csv file */
 outsheet using gss_new.csv, replace comma

insheet using gss.csv, clear
(7 vars, 451 obs)

outsheet using gss_new.csv, replace comma

		Import data from SAS and Excel

 /* import/export SAS xport files */
 clear
 import sasxport gss.xpt
 export sasxport newFileName, replace

 /* import/export data from Excel */
 import excel using gss.xlsx, firstrow clear
 export excel newFileName.xls, replace

clear
import sasxport gss.xpt
export sasxport newFileName, replace
warning: internally recorded dataset name was shortened to newFileN in
 newFileName.xpt

file newFileName.xpt saved

import excel using gss.xlsx, firstrow clear
export excel newFileName.xls, replace
file newFileName.xls saved

What if my data is from another statistical software program?

		SPSS/PASW will allow you to save your data as a Stata file
		Go to: file >

 save as >

 Stata (use most recent version available)

		Then you can just go into Stata and open it

		Another option is StatTransfer, a program that converts data from/to many common formats, including SAS, SPSS, Stata, and many more

Exercise 1: Importing data

		Close down Stata and open a new session

		Go through the three steps for starting each Stata session that we reviewed
		Begin a log file

		Open your Stata dataset (gss.dta)

		Save your Stata dataset using a different name

		Try opening the following files:
		A comma separated value file: gss.csv

		A SPSS file: gss.sav

		A SAS transport file: gss.xpt

Statistics and graphs

Frequently used commands

		Commands for reviewing and inspecting data:
		describe // labels, storage type etc.

		sum // statistical summary (mean, sd, min/max etc.)

		codebook // storage type, unique values, labels

		list // print actuall values

		tab // (cross) tabulate variables

		browse // view the data in a spreadsheet-like window

		Examples

 use gss.dta, clear
 /* commands useful for inspecting data */
 // statistical summary of education
 sum educ
 // information about how region is coded
 codebook region
 // numbers of male and female participants
 tab sex

use gss.dta, clear

sum educ

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 educ | 217 13.52995 3.0687 1 20

codebook region

region (unlabeled)

 type: string (str5)

 unique values: 4 missing "": 0/217

 tabulation: Freq. Value
 54 "east"
 48 "north"
 48 "south"
 67 "west"

tab sex

respondents |
 sex | Freq. Percent Cum.
------------+-----------------------------------
 male | 114 52.53 52.53
 female | 103 47.47 100.00
------------+-----------------------------------
 Total | 217 100.00

		Remember, if you run these commands without specifying variables, Stata will produce output for every variable

Basic graphing commands

		Univariate distribution(s) using hist

 /* Histograms */
 hist educ
 // histogram with normal curve; see 'help hist' for other options
 hist age, normal

hist educ
(bin=14, start=1, width=1.3571429)

hist age, normal
(bin=14, start=18, width=4.2142857)

		View bivariate distributions with scatterplots

 /* scatterplots */
 twoway (scatter educ age)
 graph matrix educ age inc

twoway (scatter educ age)
graph matrix educ age inc

The “by” command

		Sometimes, you’d like to generate output based on different categories of a grouping variable

		The “by” command does just this

 /* By Processing */
 // tabulate happy separately for men and women
 bysort sex: tab happy
 // summarize eudcation by marital status
 bysort marital: sum educ

bysort sex: tab happy

-> sex = male

 general |
 happiness | Freq. Percent Cum.
--------------+-----------------------------------
 very happy | 32 28.07 28.07
 pretty happy | 68 59.65 87.72
not too happy | 14 12.28 100.00
--------------+-----------------------------------
 Total | 114 100.00

-> sex = female

 general |
 happiness | Freq. Percent Cum.
--------------+-----------------------------------
 very happy | 33 32.04 32.04
 pretty happy | 61 59.22 91.26
not too happy | 9 8.74 100.00
--------------+-----------------------------------
 Total | 103 100.00

bysort marital: sum educ

-> marital = married

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 educ | 103 13.65049 3.374381 1 20

-> marital = widowed

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 educ | 6 12.33333 1.36626 11 15

-> marital = divorced

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 educ | 39 13.46154 2.501012 6 19

-> marital = separate

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 educ | 9 12.11111 2.803767 6 14

-> marital = never ma

 Variable | Obs Mean Std. Dev. Min Max
-------------+--
 educ | 60 13.7 3.004516 6 20

Exercise 2: Descriptive statistics

		Use the dataset, gss.dta

		Examine a few selected variables using the describe, sum and codebook commands

		Tabulate the variable, “marital,” with and without labels

		Summarize the variable, “income” separately participants based on marital status

		Cross-tabulate marital with region and show gender percent by region

		Summarize the variable, “happy” for married individuals only

		Generate a histogram of income

		Generate a second histogram of income, but this time, split income based on participants sex and ask Stata to print the normal curve on your histograms

Basic data management

Labels

		You never know why and when your data may be reviewed

		ALWAYS label every variable no matter how insignificant it may seem

		Stata uses two sets of labels: variable labels and value labels

		Variable labels are very easy to use – value labels are a little more complicated

Variable and value labels

		Variable labels

 /* Labelling and renaming */
 // Label variable inc "household income"
 label var inc "household income"

 // change the name 'educ' to 'education'
 rename educ education

 // you can search names and labels with 'lookfor'
 lookfor household

label var inc "household income"

rename educ education

lookfor household

 storage display value
variable name type format label variable label

inc byte %8.0g rincom06 household income

		Value labels are a two step process: define a value label, then assign defined label to variable(s)

 /*define a value label for sex */
 label define mySexLabel 1 "Male" 2 "Female"
 /* assign our label set to the sex variable*/
 label val sex mySexLabel

label define mySexLabel 1 "Male" 2 "Female"

label val sex mySexLabel

Exercise 3: Variable labels and value labels

		Open the data set gss.csv

		Familiarize yourself with the data using describe, sum, etc.

		Rename and label variables using the following codebook:

var	rename to	label with
———	—————	———————
v1	marital	marital status
v2	age	age of respondent
v3	educ	education
v4	sex	respondent’s sex
v5	inc	household income
v6	happy	general happiness
v7	region	region of interview

		Add value labels to your “marital” variable using this codebook:

value	label
———–	—————–
1	“married”
2	“widowed”
3	“divorced”
4	“separated”
5	“never married”

Working on subsets

		It is often useful to select just those rows of your data where some condition holds–for example select only rows where sex is 1 (male)

		The following operators allow you to do this:

Operator	Meaning
———-	————————–
==	equal to
!=	not equal to

>

 | greater than |
| >

= | greater than or equal to |
| <

 | less than |
| <

= | less than or equal to |
| & | and |
| | or |

		Note the double equals signs for testing equality

Generating and replacing variables

		Create new variables using “gen”

 // create a new variable named mc_inc
 // equal to inc minus the mean of inc
 gen mc_inc = inc - 15.37

gen mc_inc = inc - 15.37

		Sometimes useful to start with blank values and fill them in based on values of existing variables

 /* the 'generate and replace' strategy */
 // generate a column of missings
 gen age_wealth = .
 // Next, start adding your qualifications
 replace age_wealth=1 if age<30 & inc < 10
 replace age_wealth=2 if age<30 & inc > 10
 replace age_wealth=3 if age>30 & inc < 10
 replace age_wealth=4 if age>30 & inc > 10

 // conditions can also be combined with "or"
 gen young=0
 replace young=1 if age_wealth==1 | age_wealth==2

gen age_wealth = .
(217 missing values generated)

replace age_wealth=1 if age<30 & inc < 10
(19 real changes made)
replace age_wealth=2 if age<30 & inc > 10
(26 real changes made)
replace age_wealth=3 if age>30 & inc < 10
(22 real changes made)
replace age_wealth=4 if age>30 & inc > 10
(134 real changes made)

gen young=0
replace young=1 if age_wealth==1 | age_wealth==2
(45 real changes made)

Exercise 4: Manipulating variables

		Use the dataset, gss.dta

		Generate a new variable, age2 equal to age squared

		Generate a new “high income” variable that will take on a value of “1” if a person has an income value greater than “15” and “0” otherwise

		Generate a new divorced/separated dummy variable that will take on a value of “1” if a person is either divorced or separated and “0” otherwise

Wrap-up

Help us make this workshop better!

		Please take a moment to fill out a very short feedback form

		These workshops exist for you – tell us what you need!

		http://tinyurl.com/6h3cxnz

Additional resources

		IQSS workshops: http://projects.iq.harvard.edu/rtc/filter_by/workshops

		IQSS statistical consulting: http://dss.iq.harvard.edu

		The RCE
		Research Computing Enviroment (RCE) service available to Harvard & MIT users

		http://www.iq.harvard.edu/research_computing

		Wonderful resource for organizing data, running analyses efficiently

		Creates a centralized place to store data and run analysis

		Supplies persistent desktop environment accessible from any computer with an internet connection

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/unnamed-chunk-64.png
Admitied

Stata/StataDatMan/StataDatMan.html

 Navigation

 		
 index

 		workshops latest documentation »

Introduction

Materials and Setup

		Lab computer log in:
		USERNAME: dataclass

		PASSWORD: on the board to your left

		Workshop materials:
		Download class materials from http://tutorials.iq.harvard.edu/Stata/StataDatMan.zip

		Open a file browser, right-click on StataDatMan.zip, select the WinZip menu and select Extract to Here.

Copy the workshop materials to your home directory

		Log in to an Athena workstation using your Athena user name and password

		Click on the “Ubuntu” button on the upper-left and type “term” as shown below

		Click on the “Terminal” icon as shown above

		In the terminal, type this line exactly as shown:

		If you see “ERROR 404: Not Found”, then you mistyped the command – try again, making sure to type the command exactly as shown. If it still doesn’t work, open http://j.mp/stata-datman in a web browser.

Launch Stata on Athena

		To start Stata type these commands in the terminal:

 add stata
 xstata

		Open up today’s Stata script
		In Stata, go to Window =>

 New do file =>

 Open

		Locate and open the StatDatMan.do script in the StataDatMan folder in your home directory

		I encourage you to add your own notes to this file!

Workshop Description

		This is an Introduction to data management in Stata

		Assumes basic knowledge of Stata

		Not appropriate for people already well familiar with Stata

		If you are catching on before the rest of the class, experiment with command features described in help files

Organization

		Please feel free to ask questions at any point if they are relevant to the current topic (or if you are lost!)

		There will be a Q&A after class for more specific, personalized questions

		Collaboration with your neighbors is encouraged

		If you are using a laptop, you will need to adjust paths accordingly

Opening Files in Stata

		Look at bottom left hand corner of Stata screen
		This is the directory Stata is currently reading from

		Files are located in the StataDatMan folder in your home directory

		Start by telling Stata where to look for these

 // change directory
 cd "~/tutorials/Stata/StataDatMan"

 // Use dir to see what is in the directory:
 dir
 dir dataSets

 // use the gss data set
 use dataSets/gss.dta

set more off

cd "~/tutorials/Stata/StataDatMan"
/nfs/www/edu-harvard-iq-tutorials/Stata/StataDatMan

dir

total 100
drwxrwsr-x. 2 apache tutorwww 4096 Oct 9 08:44 dataSets/
-rwxrwxr-x. 1 izahn tutorwww 1302 Oct 9 08:44 Exercises.do*
drwxrwsr-x. 2 apache tutorwww 4096 Oct 9 08:44 images/
drwxrwsr-x. 4 apache tutorwww 4096 Oct 9 08:44 StataDatMan/
-rwxrwxr-x. 1 izahn tutorwww 17446 Oct 9 08:44 StataDatMan.do*
-rwxrwxr-x. 1 izahn tutorwww 38153 Oct 9 08:44 StataDatMan.html*
-rwxrwxr-x. 1 izahn tutorwww 20463 Oct 9 08:44 StataDatMan.org*
dir dataSets

total 2644
-rwxrwxr-x. 1 izahn tutorwww 275705 Oct 9 08:44 gss1.dta*
-rwxrwxr-x. 1 izahn tutorwww 263324 Oct 9 08:44 gss2.dta*
-rwxrwxr-x. 1 izahn tutorwww 532880 Oct 9 08:44 gssAddObserve.dta*
-rwxrwxr-x. 1 izahn tutorwww 527005 Oct 9 08:44 gssAppend.dta*
-rwxrwxr-x. 1 izahn tutorwww 527005 Oct 9 08:44 gsscompare1.dta*
-rwxrwxr-x. 1 izahn tutorwww 538755 Oct 9 08:44 gss.dta*
-rwxrwxr-x. 1 izahn tutorwww 1139 Oct 9 08:44 marital.dta*

use dataSets/gss.dta

Generating and replacing variables

Basic Data Manipulation Commands

Basic commands you’ll use for generating new variables or recoding existing variables:

		gen

		egen

		replace

		recode

Many different means of accomplishing the same thing in Stata – find what is comfortable (and easy) for you!

Generate and Replace

The replace command is often used with logic statements. Available logical operators include the following:

Operator	Meaning
———-	————————–
==	equal to
!=	not equal to

>

 | greater than |
| >

= | greater than or equal to |
| <

 | less than |
| <

= | less than or equal to |
| & | and |
| | or |

For example:

 //create "hapnew" variable
 gen hapnew = .
 //set to 0 if happy equals 1
 replace hapnew=0 if happy==1
 //set to 1 if happy both and hapmar are greater than 3
 replace hapnew=1 if happy>3 & hapmar>3
 // tabulate the new
 tab hapnew

gen hapnew = .
(1,419 missing values generated)

replace hapnew=0 if happy==1
(435 real changes made)

replace hapnew=1 if happy>3 & hapmar>3
(4 real changes made)

tab hapnew

 hapnew | Freq. Percent Cum.
------------+-----------------------------------
 0 | 435 99.09 99.09
 1 | 4 0.91 100.00
------------+-----------------------------------
 Total | 439 100.00

Recode

The recode command is basically generate and replace combined. You can recode an existing variable OR use recode to create a new variable (via the gen option).

 // recode the wrkstat variable
 recode wrkstat (1=8) (2=7) (3=6) (4=5) (5=4) (6=3) (7=2) (8=1)
 // recode wrkstat into a new variable named wrkstat2
 recode wrkstat (1=8), gen(wrkstat2)
 // tabulate workstat
 tab wrkstat

recode wrkstat (1=8) (2=7) (3=6) (4=5) (5=4) (6=3) (7=2) (8=1)
(wrkstat: 1419 changes made)

recode wrkstat (1=8), gen(wrkstat2)
(32 differences between wrkstat and wrkstat2)

tab wrkstat

 LABOR FRCE |
 STATUS | Freq. Percent Cum.
-----------------+-----------------------------------
WORKING FULLTIME | 32 2.26 2.26
WORKING PARTTIME | 155 10.92 13.18
TEMP NOT WORKING | 34 2.40 15.57
UNEMPL, LAID OFF | 214 15.08 30.66
 RETIRED | 29 2.04 32.70
 SCHOOL | 35 2.47 35.17
 KEEPING HOUSE | 146 10.29 45.45
 OTHER | 774 54.55 100.00
-----------------+-----------------------------------
 Total | 1,419 100.00

The table below illustrates common forms of recoding

Rule	Example	Meaning				
—————	—————————————-	————————-	————————–			
#=#	3=1	3 recoded to 1				
##=#	2. 9	2 and . recoded to 9		#/# #	1/5=4	1 through 5 recoded to 4
nonmissing=#	nonmiss=8	nonmissing recoded to 8				
missing=#	miss=9	missing recoded to 9				

egen

The egen command (“extensions” to the gen command) provides convenient methods for performing many common data manipulation tasks.

For example, we can use egen to create a new variable that counts the number of “yes” responses on computer, email and internet use:

 // count number of yes on use comp email and net
 egen compuser= anycount(usecomp usemail usenet), values(1)
 tab compuser

egen compuser= anycount(usecomp usemail usenet), values(1)
tab compuser

 usecomp |
 usemail |
usenet == 1 | Freq. Percent Cum.
------------+-----------------------------------
 0 | 623 43.90 43.90
 1 | 142 10.01 53.91
 2 | 78 5.50 59.41
 3 | 576 40.59 100.00
------------+-----------------------------------
 Total | 1,419 100.00

Here are some additional examples of egen in action:

 // assess how much missing data each participant has:
 egen countmiss = rowmiss(age-wifeft)
 codebook countmiss
 // compare values on multiple variables
 egen ftdiff=diff(wkftwife wkfthusb)
 codebook ftdiff

egen countmiss = rowmiss(age-wifeft)
codebook countmiss

countmiss (unlabeled)

 type: numeric (float)

 range: [0,7] units: 1
 unique values: 6 missing .: 0/1,419

 tabulation: Freq. Value
 296 0
 215 1
 113 2
 7 3
 782 6
 6 7

egen ftdiff=diff(wkftwife wkfthusb)
codebook ftdiff

ftdiff diff wkftwife wkfthusb

 type: numeric (float)

 range: [0,1] units: 1
 unique values: 2 missing .: 0/1,419

 tabulation: Freq. Value
 1,169 0
 250 1

You will need to refer to the documentation to discover what else egen can do: type “help egen” in Stata to get a complete list of functions.

Exercise 1: Generate, Replace, Recode & Egen

Open the gss.dta data.

		Generate a new variable that represents the squared value of age.

		Generate a new variable equal to “1” if income is greater than “19”.

		Create a new variable that counts the number of missing responses for each respondent. What is the maximum number of missing variables?

Exercise 1 prototype

Open the gss.dta data.

		[@1] Generate a new variable that represents the squared value of age.

 use dataSets/gss.dta, clear
 gen age2 = age^2

		[@2] Generate a new variable equal to “1” if income is greater than “19”.

 describe income
 label list income
 recode income (99=.) (98=.)
 gen highincome =0 if income != .
 replace highincome=1 if income>19
 sum highincome

		[@3]Create a new variable that counts the number of missing responses for each respondent. What is the maximum number of missing variables?

 egen nmissing = rowmiss(_all)
 sum nmissing

By processing

The “bysort” Command

Sometimes, you’d like to create variables based on different categories of a single variable. For example, say you want to look at happiness based on whether an individual is male or female. The “bysort” prefix does just this:

 // tabulate happy separately for male and female
 bysort sex: tab happy
 // generate summary statistics using bysort
 bysort state: egen stateincome = mean(income)
 bysort degree: egen degreeincome = mean(income)
 bysort marital: egen marincomesd = sd(income)

bysort sex: tab happy

-> sex = Male

 GENERAL |
 HAPPINESS | Freq. Percent Cum.
--------------+-----------------------------------
 VERY HAPPY | 189 30.39 30.39
 PRETTY HAPPY | 350 56.27 86.66
NOT TOO HAPPY | 73 11.74 98.39
 NA | 10 1.61 100.00
--------------+-----------------------------------
 Total | 622 100.00

-> sex = Female

 GENERAL |
 HAPPINESS | Freq. Percent Cum.
--------------+-----------------------------------
 VERY HAPPY | 246 30.87 30.87
 PRETTY HAPPY | 447 56.09 86.95
NOT TOO HAPPY | 84 10.54 97.49
 DK | 1 0.13 97.62
 NA | 19 2.38 100.00
--------------+-----------------------------------
 Total | 797 100.00

bysort state: egen stateincome = mean(income)
variable state not found
r(111);
bysort degree: egen degreeincome = mean(income)
bysort marital: egen marincomesd = sd(income)

By prefix vs. by options

Some commands won’t work with by prefix, but instead have a by option:

 // generate separate histograms for female and male
 hist nethrs, by(sex)

Missing values

Missing Values

You always need to consider how missing values are coded when recoding variables.

		Stata’s symbol for a missing value is ”.”

		Stata interprets ”.” as a large value

		Easy to make mistakes!

To identify highly educated women, we might use the command:

 // generate and replace without considering missing values
 gen hi_ed=0
 replace hi_ed=1 if wifeduc>15
 // What happens to our missing values?
 tab hi_ed, mi nola

gen hi_ed=0
replace hi_ed=1 if wifeduc>15
(944 real changes made)

tab hi_ed, mi nola

 hi_ed | Freq. Percent Cum.
------------+-----------------------------------
 0 | 475 33.47 33.47
 1 | 944 66.53 100.00
------------+-----------------------------------
 Total | 1,419 100.00

It looks like around 66% have higher education, but look closer:

 // gen hi_ed2, but don't set a value if wifeduc is missing
 gen hi_ed2 = 0 if wifeduc != .
 // only replace non-missing
 replace hi_ed2=1 if wifeduc >15 & wifeduc !=.
 //check to see that missingness is preserved
 tab hi_ed2, mi

gen hi_ed2 = 0 if wifeduc != .
(797 missing values generated)

replace hi_ed2=1 if wifeduc >15 & wifeduc !=.
(147 real changes made)

 | 797 56.17 100.00
------------+-----------------------------------
 Total | 1,419 100.00

The correct value is 10%. Moral of the story? Be careful with missing values and remember that Stata considers missing values to be large!

Bulk Conversion to Missing Values

Often the data collection/generating procedure will have used some other value besides ”.” to represent missing values. The mvdecode command will convert all these values to missing. For example:

 mvdecode _all, mv(999)

mvdecode _all, mv(999)

		The “_all” command tells Stata to do this to all variables

		Use this command carefully!
		If you have any variables where “999” is a legitimate value, Stata is going to recode it to missing

		As an alternative, you could list var names separately rather than using “_all”

Variable types

Variable Types

Stata uses two main types of variables: String and Numeric. To be able to perform any mathematical operations, your variables need to be in a numeric format. Stata can store numbers with differing levels of precision, as described in the table below.

type	Minimum	Maximum	being 0	bytes
——–	———————————	——————————–	———————-	——-
byte	-127	100	+/-1	1
int	-32,767	32,740	+/-1	2
long	-2,147,483,647	2,147,483,620	+/-1	4
float	-1.70141173319*1038	1.70141173319*1038	+/-10-38	4
double	-8.9884656743*10307	8.9884656743*10307	+/-10-323	8

		Precision for float is 3.795x10-8.

		Precision for double is 1.414x10-16.

Converting to and from Strings

Stata provides several ways to convert to and from strings. You can use tostring and destring to convert from one type to the other:

 // convert degree to a string
 tostring degree, gen(degree_s)
 // and back to a number
 destring degree_s, gen(degree_n)

tostring degree, gen(degree_s)
degree_s generated as str1

destring degree_s, gen(degree_n)
degree_s has all characters numeric; degree_n generated as byte

Use decode and encode to convert to/from variable labels:

 // convert degree to a descriptive string
 decode degree, gen(degree_s2)
 // and back to a number with labels
 encode degree_s2, gen(degree_n2)

decode degree, gen(degree_s2)

encode degree_s2, gen(degree_n2)

Converting Strings to Date/Time

Often date/time variables start out as strings – You’ll need to convert them to numbers using one of the conversion functions listed below.

Format	Meaning	String-to-numeric conversion function
——–	————–	—————————————
%tc	milliseconds	clock(string, mask)
%td	days	date(string, mask)
%tw	weeks	weekly(string, mask)
%tm	months	monthly(string, mask)
%tq	quarters	quarterly(string, mask)
%ty	years	yearly(string, mask)

Date/time variables are stored as the number of units elapsed since 01jan1960 00:00:00.000. For example, the date function returns the number of days since that time, and the clock function returns the number of milliseconds since that time.

 // create string variable and convert to date
 gen date = "November 9 2020"
 gen date1 = date(date, "MDY")
 list date1 in 1/5

gen date = "November 9 2020"
gen date1 = date(date, "MDY")
list date1 in 1/5

 +-------+
 | date1 |
 |-------|
 1. | 22228 |
 2. | 22228 |
 3. | 22228 |
 4. | 22228 |
 5. | 22228 |
 +-------+

Formatting Numbers as Dates

Once you have converted the string to a number you can format it for display. You can simply accept the defaults used by your formatting string or provide details to customize it.

 // format so humans can read the date
 format date1 %d
 list date1 in 1/5
 // format with detail
 format date1 %tdMonth_dd,_CCYY
 list date1 in 1/5

format date1 %d
list date1 in 1/5

 +-----------+
 | date1 |
 |-----------|
 1. | 09nov2020 |
 2. | 09nov2020 |
 3. | 09nov2020 |
 4. | 09nov2020 |
 5. | 09nov2020 |
 +-----------+

format date1 %tdMonth_dd,_CCYY
list date1 in 1/5

 +------------------+
 | date1 |
 |------------------|
 1. | November 9, 2020 |
 2. | November 9, 2020 |
 3. | November 9, 2020 |
 4. | November 9, 2020 |
 5. | November 9, 2020 |
 +------------------+

Exercise 2: Missing Values, String Conversion, and by Processing

		Recode values “99” and “98” on the variable, “hrs1” as “missing.”

		Recode the marital variable into a “string” variable and then back into a numeric variable.

		Create a new variable that associates each individual with the average number of hours worked among individuals with matching educational degrees (see the last “by” example for inspiration).

Exercise 2 prototype

		[@1] Recode values “99” and “98” on the variable, “hrs1” as “missing.”

 use dataSets/gss.dta, clear
 sum hrs1
 recode hrs1 (99=.) (98=.)
 sum hrs1

		[@2] Recode the marital variable into a “string” variable and then back into a numeric variable.

 tostring marital, gen(marstring)
 destring marstring, gen(mardstring)
 //compare with
 decode marital, gen(marital_s)
 encode marital_s, gen(marital_n)

 describe marital marstring mardstring marital_s marital_n
 sum marital marstring mardstring marital_s marital_n

		[@3] Create a new variable that associates each individual with the average number of hours worked among individuals with matching educational degrees (see the last “by” example for inspiration).

 bysort degree: egen hrsdegree = mean(hrs1)
 tab hrsdegree
 tab hrsdegree degree

Merging, appending, and joining

Appending Datasets

Sometimes you have observations in two different datasets, or you’d like to add observations to an existing dataset. In this case you can use the append command to add observations to the end of the observations in the master dataset. For example:

 clear
 // from the append help file
 webuse even
 list
 webuse odd
 list
 // Append even data to the end of the odd data
 append using "http://www.stata-press.com/data/r14/even"
 list
 clear

clear

webuse even
(6th through 8th even numbers)
list

 +---------------+
 | number even |
 |---------------|
 1. | 6 12 |
 2. | 7 14 |
 3. | 8 16 |
 +---------------+
webuse odd
(First five odd numbers)
list

 +--------------+
number odd
 1. | 1 1 |
 2. | 2 3 |
 3. | 3 5 |
 4. | 4 7 |
 5. | 5 9 |
 +--------------+

append using "http://www.stata-press.com/data/r14/even"
list

 +---------------------+
 | number odd even |
 |---------------------|
 1. | 1 1 . |
 2. | 2 3 . |
 3. | 3 5 . |
 4. | 4 7 . |
5 9 .
 6. | 6 . 12 |
 7. | 7 . 14 |
 8. | 8 . 16 |
 +---------------------+
clear

To keep track of where observations came from, use the generate option as shown below:

 webuse odd
 append using "http://www.stata-press.com/data/r14/even", generate(observesource)
 list
 clear

webuse odd
(First five odd numbers)
 ce)
list

 +--------------------------------+
 | number odd observ~e even |
 |--------------------------------|
 1. | 1 1 0 . |
 2. | 2 3 0 . |
 3. | 3 5 0 . |
 4. | 4 7 0 . |
5 9 0 .
 6. | 6 . 1 12 |
 7. | 7 . 1 14 |
 8. | 8 . 1 16 |
 +--------------------------------+
clear

There is a “force” option will allow for data type mismatches, but again this is not recommended.

Remember, append is for adding observations (i.e., rows) from a second data set.

Merging Datasets

You can merge variables from a second dataset to the dataset you’re currently working with.

		Current active dataset = master dataset

		Dataset you’d like to merge with master = using dataset

There are different ways that you might be interested in merging data:

		Two datasets with same participant pool, one row per participant (1:1)

		A dataset with one participant per row with a dataset with multiple rows per participant (1:many or many:1)

Before you begin:

		Identify the “ID” that you will use to merge your two datasets

		Determine which variables you’d like to merge

		In Stata >

= 11, data does NOT have to be sorted

		Variable types must match across datasets (there is a “force” option to get around this, but not recommended)

 // Adapted from the merge help page
 webuse autosize
 list
 webuse autoexpense
 list

 webuse autosize
 merge 1:1 make using "http://www.stata-press.com/data/r14/autoexpense"
 list
 clear

 // keep only the matches (AKA "inner join")
 webuse autosize, clear
 merge 1:1 make using "http://www.stata-press.com/data/r14/autoexpense", keep(match) nogen
 list
 clear

webuse autosize
(1978 Automobile Data)
list

 +------------------------------------+
 | make weight length |
 |------------------------------------|
 1. | Toyota Celica 2,410 174 |
 2. | BMW 320i 2,650 177 |
 3. | Cad. Seville 4,290 204 |
 4. | Pont. Grand Prix 3,210 201 |
Datsun 210 2,020 165
 6. | Plym. Arrow 3,260 170 |
 +------------------------------------+
webuse autoexpense
(1978 Automobile Data)
list

 +---------------------------------+
make price mpg
 1. | Toyota Celica 5,899 18 |
 2. | BMW 320i 9,735 25 |
 3. | Cad. Seville 15,906 21 |
 4. | Pont. Grand Prix 5,222 19 |
 5. | Datsun 210 4,589 35 |
 +---------------------------------+

webuse autosize
(1978 Automobile Data)
merge 1:1 make using "http://www.stata-press.com/data/r14/autoexpense"

 Result # of obs.

 not matched 1
 from master 1 (_merge==1)
 from using 0 (_merge==2)

 matched 5 (_merge==3)

list

 +---+
 | make weight length price mpg _merge |
 |---|
 1. | BMW 320i 2,650 177 9,735 25 matched (3) |
 2. | Cad. Seville 4,290 204 15,906 21 matched (3) |
 3. | Datsun 210 2,020 165 4,589 35 matched (3) |
 4. | Plym. Arrow 3,260 170 . . master only (1) |
Pont. Grand Prix 3,210 201 5,222 19 matched (3)
 6. | Toyota Celica 2,410 174 5,899 18 matched (3) |
 +---+
clear

webuse autosize, clear
(1978 Automobile Data)
 match) nogen

 Result # of obs.

 not matched 0
 matched 5

list

 +---+
 | make weight length price mpg |
 |---|
 1. | BMW 320i 2,650 177 9,735 25 |
 2. | Cad. Seville 4,290 204 15,906 21 |
 3. | Datsun 210 2,020 165 4,589 35 |
 4. | Pont. Grand Prix 3,210 201 5,222 19 |
 5. | Toyota Celica 2,410 174 5,899 18 |
 +---+
clear

Remember, merge is for adding variables (i.e., columns) from a second data set.

Merge Options

There are several options that provide more fine-grain control over what happens to non-id columns contained in both data sets. If you’ve carefully cleaned and prepared the data prior to merging this shouldn’t be an issue, but here are some details about how stata handles this situation.

		In standard merge, the master dataset is the authority and WON’T CHANGE

		If your master dataset has missing data and some of those values are not missing in your using dataset, specify “update” – this will fill in missing data in master

		If you want data from your using dataset to overwrite that in your master, specify “replace update” – this will replace master data with using data UNLESS the value is missing in the using dataset

Many-to-many merges

Stata allows you to specify merges like merge m:m id using newdata.dta, but I have never seen this do anything useful. To quote the official Stata manual [https://www.stata.com/manuals13/dmerge.pdf]:

m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched within equal values of the key variable(s), with the first observation being matched to the first; the second, to the second; and so on. If the master and using have an unequal number of observations within the group, then the last observation of the shorter group is used repeatedly to match with subsequent observations of the longer group. Thus m:m merges are dependent on the current sort order—something which should never happen. Because m:m merges are such a bad idea, we are not going to show you an example. If you think that you need an m:m merge, then you probably need to work with your data so that you can use a 1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below

(emphasis added).

If you are thinking about using merge m:m chances are good that you actually need joinby. Here is a quick example, modified from the joinby help page.

 clear
 webuse parent
 list
 webuse children
 list
 // Complete and utter nonsense!
 merge m:m family_id using http://www.stata-press.com/data/r14/parent
 // You want joinby instead
 clear
 webuse children
 joinby family_id using http://www.stata-press.com/data/r14/parent

Remeber, merge m:m is old and broken; do not use. Anytime you think you might want m:m you should use joinby instead.

Creating summarized data sets

Collapse

Collapse will take master data and create a new dataset of summary statistics

		Useful in hierarchical linear modeling if you’d like to create aggregate, summary statistics

		Can generate group summary data for many descriptive stats

		Can also attach weights

Before you collapse:

		Save your master dataset and then save it again under a new name (this will prevent collapse from writing over your original data_

		Consider issues of missing data. Do you want Stata to use all possible observations? If not, the cw (casewise) option will make casewise deletions

Collapse Example

 // Adapted from the collapse help page
 clear
 webuse college
 list
 // mean and sd by hospital
 collapse (mean) mean_gpa = gpa mean_hour = hour (sd) sd_gpa = gpa sd_hour = hour, by(year)
 list
 clear

clear
webuse college
list

 +----------------------------+
 | gpa hour year number |
 |----------------------------|
 1. | 3.2 30 1 3 |
 2. | 3.5 34 1 2 |
 3. | 2.8 28 1 9 |
 4. | 2.1 30 1 4 |
3.8 29 2 3
 6. | 2.5 30 2 4 |
 7. | 2.9 35 2 5 |
 8. | 3.7 30 3 4 |
 9. | 2.2 35 3 2 |
3.3 33 3 3
 11. | 3.4 32 4 5 |
 12. | 2.9 31 4 2 |
 +----------------------------+

 our, by(year)
list

 +--+
 | year mean_gpa mean_h~r sd_gpa sd_hour |
 |--|
 1. | 1 2.9 30.5 .6055301 2.516612 |
 2. | 2 3.066667 31.33333 .6658328 3.21455 |
 3. | 3 3.066667 32.66667 .7767453 2.516612 |
 4. | 4 3.15 31.5 .3535534 .7071068 |
 +--+
clear

You could also generate different statistics for multiple variables

Exercise 3: Merge, Append, and Collapse

Open the gss2.dta dataset. This dataset contains only half of the variables that are in the complete gss dataset.

		Merge dataset gss1.dta with dataset gss2.dta. The identification variable is “id.”

		Open the gss.dta dataset and merge in data from the “marital.dta” dataset, which includes income information grouped by individuals’ marital status. The marital dataset contains collapsed data regarding average statistics of individuals based on their marital status.

		Open the gssAppend.dta dataset and Create a new dataset that combines the observations in gssAppend.dta with those in gssAddObserve.dta.

		Open the gss.dta dataset. Create a new dataset that summarizes mean and standard deviation of income based on individuals’ degree status (“degree”). In the process of creating this new dataset, rename your three new variables.

Exercise 3 prototype

Open the gss2.dta dataset. This dataset contains only half of the variables that are in the complete gss dataset.

		[@1] Merge dataset gss1.dta with dataset gss2.dta. The identification variable is “id.”

 use dataSets/gss2.dta, clear
 merge 1:1 id using dataSets/gss1.dta
 save gss3.dta, replace

		[@2] Open the gss.dta dataset and merge in data from the “marital.dta” dataset, which includes income information grouped by individuals’ marital status. The marital dataset contains collapsed data regarding average statistics of individuals based on their marital status.

 use dataSets/gss.dta, clear
 merge m:1 marital using dataSets/marital.dta, nogenerate replace update
 save gss4.dta, replace

		[@3] Open the gssAppend.dta dataset and Create a new dataset that combines the observations in gssAppend.dta with those in gssAddObserve.dta.

 use dataSets/gssAppend.dta, clear
 append using dataSets/gssAddObserve, generate(observe)

		[@4] Open the gss.dta dataset. Create a new dataset that summarizes mean and standard deviation of income based on individuals’ degree status (“degree”). In the process of creating this new dataset, rename your three new variables.

 use dataSets/gss.dta, clear
 save collapse2.dta, replace
 use collapse2.dta, clear
 collapse (mean) meaninc=income (sd) sdinc=income, by(marital)

Wrap-up

Help Us Make This Workshop Better

		Please take a moment to fill out a very short feedback form

		These workshops exist for you–tell us what you need!

		http://tinyurl.com/StataDatManFeedback

Additional resources

		training and consulting
		IQSS workshops: http://projects.iq.harvard.edu/rtc/filter_by/workshops

		IQSS statistical consulting: http://dss.iq.harvard.edu

		Stata resources
		UCLA website: http://www.ats.ucla.edu/stat/Stata/

		Great for self-study

		Links to resources

		Stata website: http://www.stata.com/help.cgi?contents

		Email list: http://www.stata.com/statalist/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Other/StatsCrashCourse/SallyClark.html

 Navigation

 		
 index

 		workshops latest documentation »

Asking the right questions

The case of Sally Clark

Sally Clark was convicted in British court of the murder of her two sons in 1999. Christopher, her first, was born on September 22nd 1996, and died three months later while home alone with his mother. Harry, her second son, was born November 29th, 1997, and died two months later, also while home alone with his mother. During the trial, an expert witness for the prosecution testified that the probability of each child independently dying of unexplained causes (sudden infant death syndrome, or SIDS) was 1/8543, and that the probability of both infants dying of SIDS was therefore around 1 in 73 million.

DISCUSSION: how likely is it that Sally Clark murdered her children?

The main problem with the 1 in 73 million figure is that it is an answer to the wrong question (it may have also been calculated incorrectly, but that is a relatively minor issue). In the case of Sally Clark, what we want is an answer to the question “How likely is it that Sally Clark killed her children?”. Instead the prosecution answered the question “How likely is it that these deaths were both caused by SIDS?”. Unfortunately, the answer to the second question is not the same as the answer to the first.

To see why the probability of two cases of SIDS in the same family is not the same as the probability that the infants were murdered, consider the following probability trees:

Loading required package: lattice Loading required package: grid Loading
required package: MASS Loading required package: nnet Loading required
package: colorspace

Attaching package: 'effects'

The following object is masked from 'package:datasets':

Titanic

Loading required package: rJava Loading required package: car

Attaching package: 'car'

The following object is masked from 'package:effects':

Prestige

Attaching package: 'rockchalk'

The following object is masked from 'package:MASS':

mvrnorm

[image: plot of chunk unnamed-chunk-1]

[image: plot of chunk unnamed-chunk-2]

[image: plot of chunk unnamed-chunk-3]

The mistake made in this case was the failure to recognize that the impressive-sounding 1 in 73 million odds of two SIDS cases in the same family was not the same as the odds that Sally Clark was innocent. The court should have focused on the relative probability of SIDS vs. murder, not on the probability of SIDS alone. While double SIDS is rare, murdering children is even more so. In fact the odds are about 6:1 in favor of SIDS! 1 in 73 million was a classic type III error (the answer to the wrong question), an error that resulted in the murder conviction of a mother who was likely innocent.

For those wishing for a more thorough analysis of the statistical issues in this case, Ray Hill’s walk-through [http://www.cse.salford.ac.uk/staff/RHill/ppe_5601.pdf] is highly recommended. For more on the Prosecutor’s Fallacy (of which this case is an example) see Thompson and Schumann (1987) [http://www.jstor.org/stable/1393631]

Berkeley gender bias case

A court case brought against the University of California, Berkeley in the 1970’s, claiming that female applicants were being discriminated against by the admissions system. Here are the actual admissions rates in the six largest departments at Berkeley in 1973 (from Wikipedia):

Female Applicant Data By Department

 		 Department 		 Female_Applicants 		 Females_Admitted

 		 A 		 108 		 89

 		 B 		 25 		 17

 		 C 		 593 		 202

 		 D 		 375 		 131

 		 E 		 393 		 94

 		 F 		 341 		 24

Male Applicant Data By Department

 		 Department 		 Male_Applicants 		 Males_Admitted

 		 A 		 825 		 512

 		 B 		 560 		 353

 		 C 		 325 		 120

 		 D 		 417 		 138

 		 E 		 191 		 53

 		 F 		 272 		 16

EXERCISE: In groups of two, calculate admissions rate for males and females. Is there evidence of gender bias? If so, which gender appears to be discriminated against?

The strange thing about this table is that we get different results depending on how we add things up:

Female Applicant Data By Department

 		 Department 		 Female_Applicants 		 Females_Admitted 		 Percent

 		 A 		 108 		 89 		 82.41

 		 B 		 25 		 17 		 68.00

 		 C 		 593 		 202 		 34.06

 		 D 		 375 		 131 		 34.93

 		 E 		 393 		 94 		 23.92

 		 F 		 341 		 24 		 7.04

 		 All 		 1835 		 557 		 30.35

Male Applicant Data By Department

 		 Department 		 Male_Applicants 		 Males_Admitted 		 Percent

 		 A 		 825 		 512 		 62.06

 		 B 		 560 		 353 		 63.04

 		 C 		 325 		 120 		 36.92

 		 D 		 417 		 138 		 33.09

 		 E 		 191 		 53 		 27.75

 		 F 		 272 		 16 		 5.88

 		 All 		 2590 		 1192 		 46.02

Why does this seemingly paradoxical result occur? Essentially because females applied to more competitive departments than did males.

There are two different angles from which we can approach this difficult issue. Way way to think about it is as an aggregation error: by comparing rates aggregated across departments will only give the same result as comparing rates within each department under very strong (and often wrong) assumptions. Making inferences about individuals based on information about groups is known as the ecological fallacy.

Another way to think about it is as an omitted variable problem. Summing the male and female columns across departments gives us the same result as if we had summed the whole university, ignoring department. From this perspective the problem is that by aggregating we have failed to account for differences across departments, and these between-department differences account for the apparent bias against female applicants.

Multiple regression

Recall the Berkely data example. Earlier we saw that we get different answers depending on how we sum across the table.

[image: plot of chunk unnamed-chunk-6] [image: plot of chunk unnamed-chunk-6] [image: plot of chunk unnamed-chunk-6] [image: plot of chunk unnamed-chunk-6]

Red State Blue State

Another example of the ecological fallacy:

Andrew Gelmans’s book “Red State, Blue State, Rich State, Poor State: Why Americans Vote the Way They Do” describes a seeming paradox: richer states are more likely to vote for democrats, while richer individual people are more likely to vote for republicans. This counter-intuitive set of findings is an example of the ecological fallacy, or the fallacy of making inferences about individuals based on groups. In general it cannot be assumed that the associations between aggregated variables (e.g., averages at the state or country level) are the same (or even similar) to the associations between those variables at the individual level. In the “red state blue state” example the striking dissimilarity is (at least partly) explained by fact that at the individual level the association between wealth and voting behavior is stronger in poorer states than it is in richer ones.

Length of short answer responses and exam scores

DISCUSSION:

As another example of how easy it can be to ask the wrong question, try answering these ones:

Do you think the association between length of short-answer responses and exam grades is positive or negative? or negative? If you were taking an exam, would it be better to write a short answer or a long one?

Answer: Students who write short answers get higher marks. But you should still write a long answer!

Education expenditures and SAT scores

http://goo.gl/N6u3x0

 © Copyright 2016.
 Created using Sphinx 1.3.5.

R/Rgraphics/Rgraphics.html

 Navigation

 		
 index

 		workshops latest documentation »

Introduction

Materials and setup

Lab computer users: Log in using the user name and password on the board to your left.

Laptop users: You should have R installed –if not:

Open a web browser and go to http://cran.r-project.org and download and install it

Also helpful to install RStudio (download from http://rstudio.com)

In R, type install.packages("ggplot2") to install the ggplot2 package.

Everyone: Download workshop materials:

Download materials from http://tutorials.iq.harvard.edu/R/Rgraphics.zip

Extract the zip file containing the materials to your desktop

Workshop notes are available in .hmtl format. Open a file browser, navigate to your desktop and open Rgraphics.html

Workshop Overview

Class Structure and Organization:

		Ask questions at any time. Really!

		Collaboration is encouraged

		This is your class! Special requests are encouraged

This is an intermediate R course:

		Assumes working knowledge of R

		Relatively fast-paced

		Focus is on ggplot2 graphics–other packages will not be covered

Starting A The End

My goal: by the end of the workshop you will be able to reproduce this graphic from the Economist:

[image:]

Why ggplot2?

Advantages of ggplot2

		consistent underlying grammar of graphics (Wilkinson, 2005)

		plot specification at a high level of abstraction

		very flexible

		theme system for polishing plot appearance

		mature and complete graphics system

		many users, active mailing list

That said, there are some things you cannot (or should not) do With ggplot2:

		3-dimensional graphics (see the rgl package)

		Graph-theory type graphs (nodes/edges layout; see the igraph package)

		Interactive graphics (see the ggvis package)

What Is The Grammar Of Graphics?

The basic idea: independently specify plot building blocks and combine them to create just about any kind of graphical display you want. Building blocks of a graph include:

		data

		aesthetic mapping

		geometric object

		statistical transformations

		scales

		coordinate system

		position adjustments

		faceting

The structure of a ggplot

The ggplot() function is used to initialize the basic graph structure, then we add to it. The structure of a ggplot looks like this:

 ggplot(data = <default data set>,
 aes(x = <default x axis variable>,
 y = <default y axis variable>,
 ... <other default aesthetic mappings>),
 ... <other plot defaults>) +

 geom_<geom type>(aes(size = <size variable for this geom>,
 ... <other aesthetic mappings>),
 data = <data for this point geom>,
 stat = <statistic string or function>,
 position = <position string or function>,
 color = <"fixed color specification">,
 <other arguments, possibly passed to the _stat_ function) +

 scale_<aesthetic>_<type>(name = <"scale label">,
 breaks = <where to put tick marks>,
 labels = <labels for tick marks>,
 ... <other options for the scale>) +

 theme(plot.background = element_rect(fill = "gray"),
 ... <other theme elements>)

Don’t be afraid, you will understand this by the end of the workshop! The basic idea is that you specify different parts of the plot, and add them together using the + operator.

Example Data: Housing prices

Let’s look at housing prices.

 housing <- read.csv("dataSets/landdata-states.csv")
 head(housing[1:5])

(Data from https://www.lincolninst.edu/subcenters/land-values/land-prices-by-state.asp)

ggplot2 VS Base Graphics

Compared to base graphics, ggplot2

		is more verbose for simple / canned graphics

		is less verbose for complex / custom graphics

		does not have methods (data should always be in a data.frame)

		uses a different system for adding plot elements

ggplot2 VS Base for simple graphs

Base graphics histogram example:

 hist(housing$Home.Value)

ggplot2 histogram example:

 library(ggplot2)
 ggplot(housing, aes(x = Home.Value)) +
 geom_histogram()

Base wins!

ggplot2 Base graphics VS ggplot for more complex graphs:

Base colored scatter plot example:

 plot(Home.Value ~ Date,
 data=subset(housing, State == "MA"))
 points(Home.Value ~ Date, col="red",
 data=subset(housing, State == "TX"))
 legend(19750, 400000,
 c("MA", "TX"), title="State",
 col=c("black", "red"),
 pch=c(1, 1))

ggplot2 colored scatter plot example:

 ggplot(subset(housing, State %in% c("MA", "TX")),
 aes(x=Date,
 y=Home.Value,
 color=State))+
 geom_point()

ggplot2 wins!

Geometric Objects And Aesthetics

Aesthetic Mapping

In ggplot land aesthetic means “something you can see”. Examples include:

		position (i.e., on the x and y axes)

		color (“outside” color)

		fill (“inside” color)

		shape (of points)

		linetype

		size

Each type of geom accepts only a subset of all aesthetics–refer to the geom help pages to see what mappings each geom accepts. Aesthetic mappings are set with the aes() function.

Geometic Objects (geom)

Geometric objects are the actual marks we put on a plot. Examples include:

		points (geom_point, for scatter plots, dot plots, etc)

		lines (geom_line, for time series, trend lines, etc)

		boxplot (geom_boxplot, for, well, boxplots!)

A plot must have at least one geom; there is no upper limit. You can add a geom to a plot using the + operator

You can get a list of available geometric objects using the code below:

 help.search("geom_", package = "ggplot2")

or simply type geom_<tab> in any good R IDE (such as Rstudio or ESS) to see a list of functions starting with geom_.

Points (Scatterplot)

Now that we know about geometric objects and aesthetic mapping, we can make a ggplot. geom_point requires mappings for x and y, all others are optional.

 hp2001Q1 <- subset(housing, Date == 20011)
 ggplot(hp2001Q1,
 aes(y = Structure.Cost, x = Land.Value)) +
 geom_point()

Lines (Prediction Line)

A plot constructed with ggplot can have more than one geom. In that case the mappings established in the ggplot() call are plot defaults that can be added to or overridden. Our plot could use a regression line:

 hp2001Q1$pred.SC <- predict(lm(Structure.Cost ~ Land.Value, data = hp2001Q1))

 p1 <- ggplot(hp2001Q1, aes(x = Land.Value, y = Structure.Cost))

 p1 + geom_point(aes(color = Home.Value)) +
 geom_line(aes(y = pred.SC))

Smoothers

Not all geometric objects are simple shapes–the smooth geom includes a line and a ribbon.

 p1 +
 geom_point(aes(color = Home.Value)) +
 geom_smooth()

Text (Label Points)

Each geom accepts a particualar set of mappings–for example geom_text() accepts a labels mapping.

 p1 +
 geom_text(aes(label=State), size = 3)

 ## install.packages("ggrepel")
 library("ggrepel")
 p1 +
 geom_point() +
 geom_text_repel(aes(label=State), size = 3)

Aesthetic Mapping VS Assignment

Note that variables are mapped to aesthetics with the aes() function, while fixed aesthetics are set outside the aes() call. This sometimes leads to confusion, as in this example:

 p1 +
 geom_point(aes(size = 2),# incorrect! 2 is not a variable
 color="red") # this is fine -- all points red

Mapping Variables To Other Aesthetics

Other aesthetics are mapped in the same way as x and y in the previous example.

 p1 +
 geom_point(aes(color=Home.Value, shape = region))

Exercise I

The data for the exercises is available in the dataSets/EconomistData.csv file. Read it in with

 dat <- read.csv("dataSets/EconomistData.csv")

Original sources for these data are http://www.transparency.org/content/download/64476/1031428 http://hdrstats.undp.org/en/indicators/display_cf_xls_indicator.cfm?indicator_id=103106&lang=en

These data consist of Human Development Index and Corruption Perception Index scores for several countries.

		Create a scatter plot with CPI on the x axis and HDI on the y axis.

		Color the points in the previous plot blue.

		Color the points in the previous plot according to Region.

		Create boxplots of CPI by Region

		Overlay points on top of the box plots

Exercise I prototype

		[@1] Create a scatter plot with CPI on the x axis and HDI on the y axis.

 ggplot(dat, aes(x = CPI, y = HDI)) +
 geom_point()

		[@2] Color the points in the previous plot blue.

 ggplot(dat, aes(x = CPI, y = HDI)) +
 geom_point(color = "blue")

		[@3] Color the points in the previous plot according to Region.

 ggplot(dat, aes(x = CPI, y = HDI)) +
 geom_point(aes(color = Region))

		[@4] Create boxplots of CPI by Region

 ggplot(dat, aes(x = Region, y = CPI)) +
 geom_boxplot()

		[@5] Overlay points on top of the box plots

 ggplot(dat, aes(x = Region, y = CPI)) +
 geom_boxplot() +
 geom_point()

Statistical Transformations

Statistical Transformations

Some plot types (such as scatterplots) do not require transformations–each point is plotted at x and y coordinates equal to the original value. Other plots, such as boxplots, histograms, prediction lines etc. require statistical transformations:

		for a boxplot the y values must be transformed to the median and 1.5(IQR)

		for a smoother smother the y values must be transformed into predicted values

Each geom has a default statistic, but these can be changed. For example, the default statistic for geom_bar is stat_count:

 args(geom_histogram)
 args(stat_bin)

Setting Statistical Transformation Arguments

Arguments to stat_ functions can be passed through geom_ functions. This can be slightly annoying because in order to change it you have to first determine which stat the geom uses, then determine the arguments to that stat.

For example, here is the default histogram of Home.Value:

 p2 <- ggplot(housing, aes(x = Home.Value))
 p2 + geom_histogram()

The binwidth looks reasonable by default, but we can change it by passing the binwidth argument to the stat_bin function:

 p2 + geom_histogram(stat = "bin", binwidth=4000)

Changing The Statistical Transformation

Sometimes the default statistical transformation is not what you need. This is often the case with pre-summarized data:

 housing.sum <- aggregate(housing["Home.Value"], housing["State"], FUN=mean)
 rbind(head(housing.sum), tail(housing.sum))

 ggplot(housing.sum, aes(x=State, y=Home.Value)) +
 geom_bar()

ggplot(housing.sum, aes(x=State, y=Home.Value)) +
 geom_bar()
Error: stat_count() must not be used with a y aesthetic.

What is the problem with the previous plot? Basically we take binned and summarized data and ask ggplot to bin and summarize it again (remember, geom_bar defaults to stat statcount=); obviously this will not work. We can fix it by telling geom_bar to use a different statistical transformation function:

 ggplot(housing.sum, aes(x=State, y=Home.Value)) +
 geom_bar(stat="identity")

Exercise II

		Re-create a scatter plot with CPI on the x axis and HDI on the y axis (as you did in the previous exercise).

		Overlay a smoothing line on top of the scatter plot using the lm method. Hint: see ?stat_smooth.

		Overlay a smoothing line on top of the scatter plot using the default method.

		BONUS (optional): Overlay a smoothing line on top of the scatter plot using the default loess method, but make it less smooth. Hint: see ?loess.

Exercise II prototype

		[@1] Re-create a scatter plot with CPI on the x axis and HDI on the y axis (as you did in the previous exercise).

 ggplot(dat, aes(x = CPI, y = HDI)) +
 geom_point()

		[@2] Overlay a smoothing line on top of the scatter plot using the lm method. Hint: see ?stat_smooth.

 ggplot(dat, aes(x = CPI, y = HDI)) +
 geom_point() +
 geom_smooth(method = "lm")

		[@3] Overlay a smoothing line on top of the scatter plot using the default method.

 ggplot(dat, aes(x = CPI, y = HDI)) +
 geom_point() +
 geom_smooth()

		[@4] BONUS (optional): Overlay a smoothing line on top of the scatter plot using the default loess method, but make it less smooth. Hint: see ?loess.

 ggplot(dat, aes(x = CPI, y = HDI)) +
 geom_point() +
 geom_smooth(span = .4)

Scales

Scales: Controlling Aesthetic Mapping

Aesthetic mapping (i.e., with aes()) only says that a variable should be mapped to an aesthetic. It doesn’t say how that should happy. For example, when mapping a variable to shape with aes(shape x)= you don’t say what shapes should be used. Similarly, aes(color z)= doesn’t say what colors should be used. Describing what colors/shapes/sizes etc. to use is done by modifying the corresponding scale. In ggplot2 scales include

		position

		color and fill

		size

		shape

		line type

Scales are modified with a series of functions using a scale_<aesthetic>_<type> naming scheme. Try typing scale_<tab> to see a list of scale modification functions.

Common Scale Arguments

The following arguments are common to most scales in ggplot2:

namethe first argument gives the axis or legend title

limitsthe minimum and maximum of the scale

breaksthe points along the scale where labels should appear

labelsthe labels that appear at each break

Specific scale functions may have additional arguments; for example, the scale_color_continuous function has arguments low and high for setting the colors at the low and high end of the scale.

Scale Modification Examples

Start by constructing a dotplot showing the distribution of home values by Date and State.

 p3 <- ggplot(housing,
 aes(x = State,
 y = Home.Price.Index)) +
 theme(legend.position="top",
 axis.text=element_text(size = 6))
 (p4 <- p3 + geom_point(aes(color = Date),
 alpha = 0.5,
 size = 1.5,
 position = position_jitter(width = 0.25, height = 0)))

Now modify the breaks and labels for the x axis and color scales

 p4 + scale_x_discrete(name="State Abbreviation") +
 scale_color_continuous(name="",
 breaks = c(19751, 19941, 20131),
 labels = c(1971, 1994, 2013))

Next change the low and high values to blue and red:

 p4 +
 scale_x_discrete(name="State Abbreviation") +
 scale_color_continuous(name="",
 breaks = c(19751, 19941, 20131),
 labels = c(1971, 1994, 2013),
 low = "blue", high = "red")

 p4 +
 scale_color_continuous(name="",
 breaks = c(19751, 19941, 20131),
 labels = c(1971, 1994, 2013),
 low = muted("blue"), high = muted("red"))

Using different color scales

ggplot2 has a wide variety of color scales; here is an example using scale_color_gradient2 to interpolate between three different colors.

 p4 +
 scale_color_gradient2(name="",
 breaks = c(19751, 19941, 20131),
 labels = c(1971, 1994, 2013),
 low = muted("blue"),
 high = muted("red"),
 mid = "gray60",
 midpoint = 19941)

Available Scales

		Partial combination matrix of available scales

Scale	Types	Examples
—————————-	————	———————————-
scalecolor_	identity	scalefillcontinuous
scalefill_	manual	scalecolordiscrete
scalesize_	continuous	scalesizemanual
	discrete	scalesizediscrete
scaleshape_	discrete	scaleshapediscrete
scalelinetype_	identity	scaleshapemanual
	manual	scalelinetypediscrete
scalex_	continuous	scalexcontinuous
scaley_	discrete	scaleydiscrete
	reverse	scalexlog
	log	scaleyreverse
	date	scalexdate
	datetime	scaleydatetime

Note that in RStudio you can type scale_ followed by TAB to get the whole list of available scales.

Exercise III

		Create a scatter plot with CPI on the x axis and HDI on the y axis. Color the points to indicate region.

		Modify the x, y, and color scales so that they have more easily-understood names (e.g., spell out “Human development Index” instead of “HDI”).

		Modify the color scale to use specific values of your choosing. Hint: see ?scale_color_manual.

Exercise III prototype

		[@1] Create a scatter plot with CPI on the x axis and HDI on the y axis. Color the points to indicate region.

 ggplot(dat, aes(x = CPI, y = HDI, color = "Region")) +
 geom_point()

		[@2] Modify the x, y, and color scales so that they have more easily-understood names (e.g., spell out “Human development Index” instead of “HDI”).

 ggplot(dat, aes(x = CPI, y = HDI, color = "Region")) +
 geom_point() +
 scale_x_continuous(name = "Corruption Perception Index") +
 scale_y_continuous(name = "Human Development Index") +
 scale_color_discrete(name = "Region of the world")

		[@3] Modify the color scale to use specific values of your choosing. Hint: see ?scale_color_manual.

 ggplot(dat, aes(x = CPI, y = HDI, color = "Region")) +
 geom_point() +
 scale_x_continuous(name = "Corruption Perception Index") +
 scale_y_continuous(name = "Human Development Index") +
 scale_color_manual(name = "Region of the world",
 values = c("#24576D",
 "#099DD7",
 "#28AADC",
 "#248E84",
 "#F2583F",
 "#96503F"))

Faceting

Faceting

		Faceting is ggplot2 parlance for small multiples

		The idea is to create separate graphs for subsets of data

		ggplot2 offers two functions for creating small multiples:
		facet_wrap(): define subsets as the levels of a single grouping variable

		facet_grid(): define subsets as the crossing of two grouping variables

		Facilitates comparison among plots, not just of geoms within a plot

What is the trend in housing prices in each state?

		Start by using a technique we already know–map State to color:

 p5 <- ggplot(housing, aes(x = Date, y = Home.Value))
 p5 + geom_line(aes(color = State))

There are two problems here–there are too many states to distinguish each one by color, and the lines obscure one another.

Faceting to the rescue

We can remedy the deficiencies of the previous plot by faceting by state rather than mapping state to color.

 (p5 <- p5 + geom_line() +
 facet_wrap(~State, ncol = 10))

There is also a facet_grid() function for faceting in two dimensions.

Themes

Themes

The ggplot2 theme system handles non-data plot elements such as

		Axis labels

		Plot background

		Facet label backround

		Legend appearance

Built-in themes include:

		theme_gray() (default)

		theme_bw()

		theme_classc()

 p5 + theme_linedraw()

 p5 + theme_light()

Overriding theme defaults

Specific theme elements can be overridden using theme(). For example:

 p5 + theme_minimal() +
 theme(text = element_text(color = "turquoise"))

All theme options are documented in ?theme.

Creating and saving new themes

You can create new themes, as in the following example:

 theme_new <- theme_bw() +
 theme(plot.background = element_rect(size = 1, color = "blue", fill = "black"),
 text=element_text(size = 12, family = "Serif", color = "ivory"),
 axis.text.y = element_text(colour = "purple"),
 axis.text.x = element_text(colour = "red"),
 panel.background = element_rect(fill = "pink"),
 strip.background = element_rect(fill = muted("orange")))

 p5 + theme_new

The #1 FAQ

Map Aesthetic To Different Columns

The most frequently asked question goes something like this: I have two variables in my data.frame, and I’d like to plot them as separate points, with different color depending on which variable it is. How do I do that?

Wrong

 housing.byyear <- aggregate(cbind(Home.Value, Land.Value) ~ Date, data = housing, mean)
 ggplot(housing.byyear,
 aes(x=Date)) +
 geom_line(aes(y=Home.Value), color="red") +
 geom_line(aes(y=Land.Value), color="blue")

 #

Right

 library(tidyr)
 home.land.byyear <- gather(housing.byyear,
 value = "value",
 key = "type",
 Home.Value, Land.Value)
 ggplot(home.land.byyear,
 aes(x=Date,
 y=value,
 color=type)) +
 geom_line()

Putting It All Together

Challenge: Recreate This Economist Graph

file:images/Economist1.pdf

Graph source: http://www.economist.com/node/21541178

Building off of the graphics you created in the previous exercises, put the finishing touches to make it as close as possible to the original economist graph.

[image:]

Challenge Solution

Lets start by creating the basic scatter plot, then we can make a list of things that need to be added or changed. The basic plot loogs like this:

 dat <- read.csv("dataSets/EconomistData.csv")

 pc1 <- ggplot(dat, aes(x = CPI, y = HDI, color = Region))
 pc1 + geom_point()

To complete this graph we need to:

		[] add a trend line

		[] change the point shape to open circle

		[] change the order and labels of Region

		[] label select points

		[] fix up the tick marks and labels

		[] move color legend to the top

		[] title, label axes, remove legend title

		[] theme the graph with no vertical guides

		[] add model R2 (hard)

		[] add sources note (hard)

		[] final touches to make it perfect (use image editor for this)

Adding the trend line

Adding the trend line is not too difficult, though we need to guess at the model being displyed on the graph. A little bit of trial and error leds to

 (pc2 <- pc1 +
 geom_smooth(aes(group = 1),
 method = "lm",
 formula = y ~ log(x),
 se = FALSE,
 color = "red")) +
 geom_point()

Notice that we put the geom_line layer first so that it will be plotted underneath the points, as was done on the original graph.

Use open points

This one is a little tricky. We know that we can change the shape with the shape argument, what what value do we set shape to? The example shown in ?shape can help us:

 ## A look at all 25 symbols
 df2 <- data.frame(x = 1:5 , y = 1:25, z = 1:25)
 s <- ggplot(df2, aes(x = x, y = y))
 s + geom_point(aes(shape = z), size = 4) + scale_shape_identity()
 ## While all symbols have a foreground colour, symbols 19-25 also take a
 ## background colour (fill)
 s + geom_point(aes(shape = z), size = 4, colour = "Red") +
 scale_shape_identity()
 s + geom_point(aes(shape = z), size = 4, colour = "Red", fill = "Black") +
 scale_shape_identity()

This shows us that shape 1 is an open circle, so

 pc2 +
 geom_point(shape = 1, size = 4)

That is better, but unfortunately the size of the line around the points is much narrower than on the original. This is a frustrating aspect of ggplot2, and we will have to hack around it. One way to do that is to multiple point layers of slightly different sizes.

 (pc3 <- pc2 +
 geom_point(size = 4.5, shape = 1) +
 geom_point(size = 4, shape = 1) +
 geom_point(size = 3.5, shape = 1))

Labelling points

This one is tricky in a couple of ways. First, there is no attribute in the data that separates points that should be labelled from points that should not be. So the first step is to identify those points.

 pointsToLabel <- c("Russia", "Venezuela", "Iraq", "Myanmar", "Sudan",
 "Afghanistan", "Congo", "Greece", "Argentina", "Brazil",
 "India", "Italy", "China", "South Africa", "Spane",
 "Botswana", "Cape Verde", "Bhutan", "Rwanda", "France",
 "United States", "Germany", "Britain", "Barbados", "Norway", "Japan",
 "New Zealand", "Singapore")

Now we can label these points using geom_text, like this:

#+ENDSRC

 (pc4 <- pc3 +
 geom_text(aes(label = Country),
 color = "gray20",
 data = subset(dat, Country %in% pointsToLabel)))

This more or less gets the information across, but the labels overlap in a most unpleasing fashion. We can use the ggrepel package to make things better, but if you want perfection you will probably have to do some hand-adjustment.

 library("ggrepel")
 pc3 +
 geom_text_repel(aes(label = Country),
 color = "gray20",
 data = subset(dat, Country %in% pointsToLabel),
 force = 10)

Change the region labels and order

Thinkgs are starting to come together. There are just a couple more things we need to add, and then all that will be left are themeing changes.

Comparing our graph to the original we notice that the labels and order of the Regions in the color legend differ. To correct this we need to change both the labels and order of the Region variable. We can do this with the factor function.

 dat$Region <- factor(dat$Region,
 levels = c("EU W. Europe",
 "Americas",
 "Asia Pacific",
 "East EU Cemt Asia",
 "MENA",
 "SSA"),
 labels = c("OECD",
 "Americas",
 "Asia &\nOceania",
 "Central &\nEastern Europe",
 "Middle East &\nnorth Africa",
 "Sub-Saharan\nAfrica"))

Now when we construct the plot using these data the order should appear as it does in the original.

 pc4$data <- dat
 pc4

Add title and format axes

The next step is to add the title and format the axes. We do that using the scales system in ggplot2.

 library(grid)
 (pc5 <- pc4 +
 scale_x_continuous(name = "Corruption Perceptions Index, 2011 (10=least corrupt)",
 limits = c(.9, 10.5),
 breaks = 1:10) +
 scale_y_continuous(name = "Human Development Index, 2011 (1=Best)",
 limits = c(0.2, 1.0),
 breaks = seq(0.2, 1.0, by = 0.1)) +
 scale_color_manual(name = "",
 values = c("#24576D",
 "#099DD7",
 "#28AADC",
 "#248E84",
 "#F2583F",
 "#96503F")) +
 ggtitle("Corruption and Human development"))

Theme tweaks

Our graph is almost there. To finish up, we need to adjust some of the theme elements, and label the axes and legends. This part usually involves some trial and error as you figure out where things need to be positioned. To see what these various theme settings do you can change them and observe the results.

 library(grid) # for the 'unit' function
 (pc6 <- pc5 +
 theme_minimal() + # start with a minimal theme and add what we need
 theme(text = element_text(color = "gray20"),
 legend.position = c("top"), # position the legend in the upper left
 legend.direction = "horizontal",
 legend.justification = 0.1, # anchor point for legend.position.
 legend.text = element_text(size = 11, color = "gray10"),
 axis.text = element_text(face = "italic"),
 axis.title.x = element_text(vjust = -1), # move title away from axis
 axis.title.y = element_text(vjust = 2), # move away for axis
 axis.ticks.y = element_blank(), # element_blank() is how we remove elements
 axis.line = element_line(color = "gray40", size = 0.5),
 axis.line.y = element_blank(),
 panel.grid.major = element_line(color = "gray50", size = 0.5),
 panel.grid.major.x = element_blank()
))

Add model R2 and source note

The last bit of information that we want to have on the graph is the variance explained by the model represented by the trend line. Lets fit that model and pull out the R2 first, then think about how to get it onto the graph.

 (mR2 <- summary(lm(HDI ~ log(CPI), data = dat))$r.squared)

OK, now that we’ve calculated the values, let’s think about how to get them on the graph. ggplot2 has an annotate function, but this is not convenient for adding elements outside the plot area. The grid package has nice functions for doing this, so we’ll use those.

And here it is, our final version!

 library(grid)
 png(file = "images/econScatter10.png", width = 800, height = 600)
 pc6
 grid.text("Sources: Transparency International; UN Human Development Report",
 x = .02, y = .03,
 just = "left",
 draw = TRUE)
 grid.segments(x0 = 0.81, x1 = 0.825,
 y0 = 0.90, y1 = 0.90,
 gp = gpar(col = "red"),
 draw = TRUE)
 grid.text(paste0("R² = ",
 as.integer(mR2*100),
 "%"),
 x = 0.835, y = 0.90,
 gp = gpar(col = "gray20"),
 draw = TRUE,
 just = "left")

 dev.off()

[image:]

Comparing it to the original suggests that we’ve got most of the important elements, though of course the two graphs are not identical. [image:]

Wrap-up

Help Us Make This Workshop Even Better!

		Please take a moment to fill out a very short feedback form

		These workshops exist for you – tell us what you need!

		http://tinyurl.com/R-graphics-feedback

Additional resources

		ggplot2 resources
		Mailing list: http://groups.google.com/group/ggplot2

		Wiki: https://github.com/hadley/ggplot2/wiki

		Website: http://had.co.nz/ggplot2/

		StackOverflow: http://stackoverflow.com/questions/tagged/ggplot

		IQSS resources
		Research technology consulting: http://projects.iq.harvard.edu/rtc

		Workshops: http://projects.iq.harvard.edu/rtc/filter_by/workshops

 © Copyright 2016.
 Created using Sphinx 1.3.5.

R/Rstatistics/Rstatistics.html

 Navigation

 		
 index

 		workshops latest documentation »

Introduction

Workshop description

		This is an intermediate/advanced R course

		Appropriate for those with basic knowledge of R

		This is not a statistics course!

		Learning objectives:
		Learn the R formula interface

		Specify factor contrasts to test specific hypotheses

		Perform model comparisons

		Run and interpret variety of regression models in R

Materials and Setup

Lab computer users: Log in using the user name and password on the board to your left.

Laptop users:

		you should have R installed–if not, open a web browser and go to http://cran.r-project.org and download and install it

		also helpful to install RStudo (download from http://rstudio.com)

Everyone:

		Download materials from http://tutorials.iq.harvard.edu/R/Rstatistics.zip

		Extract materials from RStatistics.zip (on lab machines right-click ->

 WinZip ->

 Extract to here) and move to your desktop.

Launch RStudio

		Open the RStudio program from the Windows start menu

		Open up today’s R script
		In RStudio, Go to File =>

 Open Script

		Locate and open the Rstatistics.R script in the Rstatistics folder on your desktop

		Go to Tools =>

 Set working directory =>

 To source file location (more on the working directory later)

		I encourage you to add your own notes to this file!

Set working directory

It is often helpful to start your R session by setting your working directory so you don’t have to type the full path names to your data and other files

 # set the working directory
 # setwd("~/Desktop/Rstatistics")
 # setwd("C:/Users/dataclass/Desktop/Rstatistics")

You might also start by listing the files in your working directory

 getwd() # where am I?
 list.files("dataSets") # files in the dataSets folder

Load the states data

The states.dta data comes from http://anawida.de/teach/SS14/anawida/4.linReg/data/states.dta.txt and appears to have originally appeared in Statistics with Stata by Lawrence C. Hamilton.

 # read the states data
 states.data <- readRDS("dataSets/states.rds")
 #get labels
 states.info <- data.frame(attributes(states.data)[c("names", "var.labels")])
 #look at last few labels
 tail(states.info, 8)

Linear regression

Examine the data before fitting models

Start by examining the data to check for problems.

 # summary of expense and csat columns, all rows
 sts.ex.sat <- subset(states.data, select = c("expense", "csat"))
 summary(sts.ex.sat)
 # correlation between expense and csat
 cor(sts.ex.sat)

Plot the data before fitting models

Plot the data to look for multivariate outliers, non-linear relationships etc.

 # scatter plot of expense vs csat
 plot(sts.ex.sat)

[image:]

Linear regression example

		Linear regression models can be fit with the lm() function

		For example, we can use lm to predict SAT scores based on per-pupal expenditures:

 # Fit our regression model
 sat.mod <- lm(csat ~ expense, # regression formula
 data=states.data) # data set
 # Summarize and print the results
 summary(sat.mod) # show regression coefficients table

Why is the association between expense and SAT scores negative?

Many people find it surprising that the per-capita expenditure on students is negatively related to SAT scores. The beauty of multiple regression is that we can try to pull these apart. What would the association between expense and SAT scores be if there were no difference among the states in the percentage of students taking the SAT?

 summary(lm(csat ~ expense + percent, data = states.data))

The lm class and methods

OK, we fit our model. Now what?

		Examine the model object:

 class(sat.mod)
 names(sat.mod)
 methods(class = class(sat.mod))[1:9]

		Use function methods to get more information about the fit

 confint(sat.mod)
 # hist(residuals(sat.mod))

Linear Regression Assumptions

		Ordinary least squares regression relies on several assumptions, including that the residuals are normally distributed and homoscedastic, the errors are independent and the relationships are linear.

		Investigate these assumptions visually by plotting your model:

 par(mar = c(4, 4, 2, 2), mfrow = c(1, 2)) #optional
 plot(sat.mod, which = c(1, 2)) # "which" argument optional

Comparing models

Do congressional voting patterns predict SAT scores over and above expense? Fit two models and compare them:

 # fit another model, adding house and senate as predictors
 sat.voting.mod <- lm(csat ~ expense + house + senate,
 data = na.omit(states.data))
 sat.mod <- update(sat.mod, data=na.omit(states.data))
 # compare using the anova() function
 anova(sat.mod, sat.voting.mod)
 coef(summary(sat.voting.mod))

Exercise 0: least squares regression

Use the states.rds data set. Fit a model predicting energy consumed per capita (energy) from the percentage of residents living in metropolitan areas (metro). Be sure to

		Examine/plot the data before fitting the model

		Print and interpret the model summary

		plot the model to look for deviations from modeling assumptions

Select one or more additional predictors to add to your model and repeat steps 1-3. Is this model significantly better than the model with metro as the only predictor?

Interactions and factors

Modeling interactions

Interactions allow us assess the extent to which the association between one predictor and the outcome depends on a second predictor. For example: Does the association between expense and SAT scores depend on the median income in the state?

 #Add the interaction to the model
 sat.expense.by.percent <- lm(csat ~ expense*income,
 data=states.data)
 #Show the results
 coef(summary(sat.expense.by.percent)) # show regression coefficients table

Regression with categorical predictors

Let’s try to predict SAT scores from region, a categorical variable. Note that you must make sure R does not think your categorical variable is numeric.

 # make sure R knows region is categorical
 str(states.data$region)
 states.data$region <- factor(states.data$region)
 #Add region to the model
 sat.region <- lm(csat ~ region,
 data=states.data)
 #Show the results
 coef(summary(sat.region)) # show regression coefficients table
 anova(sat.region) # show ANOVA table

Again, make sure to tell R which variables are categorical by converting them to factors!

Setting factor reference groups and contrasts

In the previous example we use the default contrasts for region. The default in R is treatment contrasts, with the first level as the reference. We can change the reference group or use another coding scheme using the C function.

 # print default contrasts
 contrasts(states.data$region)
 # change the reference group
 coef(summary(lm(csat ~ C(region, base=4),
 data=states.data)))
 # change the coding scheme
 coef(summary(lm(csat ~ C(region, contr.helmert),
 data=states.data)))

See also ?contrasts, ?contr.treatment, and ?relevel.

Exercise 1: interactions and factors

Use the states data set.

		Add on to the regression equation that you created in exercise 1 by generating an interaction term and testing the interaction.

		Try adding region to the model. Are there significant differences across the four regions?

Regression with binary outcomes

Logistic regression

This far we have used the lm function to fit our regression models. lm is great, but limited–in particular it only fits models for continuous dependent variables. For categorical dependent variables we can use the glm() function.

For these models we will use a different dataset, drawn from the National Health Interview Survey. From the CDC website [http://www.cdc.gov/nchs/nhis.htm]:

The National Health Interview Survey (NHIS) has monitored the health of the nation since 1957. NHIS data on a broad range of health topics are collected through personal household interviews. For over 50 years, the U.S. Census Bureau has been the data collection agent for the National Health Interview Survey. Survey results have been instrumental in providing data to track health status, health care access, and progress toward achieving national health objectives.

Load the National Health Interview Survey data:

 NH11 <- readRDS("dataSets/NatHealth2011.rds")
 labs <- attributes(NH11)$labels

Logistic regression example

Let’s predict the probability of being diagnosed with hypertension based on age, sex, sleep, and bmi

 str(NH11$hypev) # check stucture of hypev
 levels(NH11$hypev) # check levels of hypev
 # collapse all missing values to NA
 NH11$hypev <- factor(NH11$hypev, levels=c("2 No", "1 Yes"))
 # run our regression model
 hyp.out <- glm(hypev~age_p+sex+sleep+bmi,
 data=NH11, family="binomial")
 coef(summary(hyp.out))

Logistic regression coefficients

Generalized linear models use link functions, so raw coefficients are difficult to interpret. For example, the age coefficient of .06 in the previous model tells us that for every one unit increase in age, the log odds of hypertension diagnosis increases by 0.06. Since most of us are not used to thinking in log odds this is not too helpful!

One solution is to transform the coefficients to make them easier to interpret

 hyp.out.tab <- coef(summary(hyp.out))
 hyp.out.tab[, "Estimate"] <- exp(coef(hyp.out))
 hyp.out.tab

Generating predicted values

In addition to transforming the log-odds produced by glm to odds, we can use the predict() function to make direct statements about the predictors in our model. For example, we can ask “How much more likely is a 63 year old female to have hypertension compared to a 33 year old female?”.

 # Create a dataset with predictors set at desired levels
 predDat <- with(NH11,
 expand.grid(age_p = c(33, 63),
 sex = "2 Female",
 bmi = mean(bmi, na.rm = TRUE),
 sleep = mean(sleep, na.rm = TRUE)))
 # predict hypertension at those levels
 cbind(predDat, predict(hyp.out, type = "response",
 se.fit = TRUE, interval="confidence",
 newdata = predDat))

This tells us that a 33 year old female has a 13% probability of having been diagnosed with hypertension, while and 63 year old female has a 48% probability of having been diagnosed.

Packages for computing and graphing predicted values

Instead of doing all this ourselves, we can use the effects package to compute quantities of interest for us (cf. the Zelig package).

 library(effects)
 plot(allEffects(hyp.out))

[image:]

Exercise 2: logistic regression

Use the NH11 data set that we loaded earlier.

		Use glm to conduct a logistic regression to predict ever worked (everwrk) using age (agep) and marital status (rmaritl).

		Predict the probability of working for each level of marital status.

Note that the data is not perfectly clean and ready to be modeled. You will need to clean up at least some of the variables before fitting the model.

Multilevel Modeling

Multilevel modeling overview

		Multi-level (AKA hierarchical) models are a type of mixed-effects models

		Used to model variation due to group membership where the goal is to generalize to a population of groups

		Can model different intercepts and/or slopes for each group

		Mixed-effecs models include two types of predictors: fixed-effects and random effects
		Fixed-effects – observed levels are of direct interest (.e.g, sex, political party...)

		Random-effects – observed levels not of direct interest: goal is to make inferences to a population represented by observed levels

		In R the lme4 package is the most popular for mixed effects models
		Use the lmer function for liner mixed models, glmer for generalized mixed models

 library(lme4)

The Exam data

The Exam data set contans exam scores of 4,059 students from 65 schools in Inner London. The variable names are as follows:

variable	Description
———-	—————————————————————————————————-
school	School ID - a factor.
normexam	Normalized exam score.
schgend	School gender - a factor. Levels are ‘mixed’, ‘boys’, and ‘girls’.
schavg	School average of intake score.
vr	Student level Verbal Reasoning (VR) score band at intake - ‘bottom 25%’, ‘mid 50%’, and ‘top 25%’.
intake	Band of student’s intake score - a factor. Levels are ‘bottom 25%’, ‘mid 50%’ and ‘top 25%’./
standLRT	Standardised LR test score.
sex	Sex of the student - levels are ‘F’ and ‘M’.
type	School type - levels are ‘Mxd’ and ‘Sngl’.
student	Student id (within school) - a factor

 Exam <- readRDS("dataSets/Exam.rds")

The null model and ICC

As a preliminary step it is often useful to partition the variance in the dependent variable into the various levels. This can be accomplished by running a null model (i.e., a model with a random effects grouping structure, but no fixed-effects predictors).

 # null model, grouping by school but not fixed effects.
 Norm1 <-lmer(normexam ~ 1 + (1|school),
 data=Exam, REML = FALSE)
 summary(Norm1)

The is .169/(.169 + .848) = .17: 17% of the variance is at the school level.

Adding fixed-effects predictors

Predict exam scores from student’s standardized tests scores

 Norm2 <-lmer(normexam~standLRT + (1|school),
 data=Exam,
 REML = FALSE)
 summary(Norm2)

Multiple degree of freedom comparisons

As with lm and glm models, you can compare the two lmer models using the anova function.

 anova(Norm1, Norm2)

Random slopes

Add a random effect of students’ standardized test scores as well. Now in addition to estimating the distribution of intercepts across schools, we also estimate the distribution of the slope of exam on standardized test.

 Norm3 <- lmer(normexam~standLRT + (standLRT|school), data=Exam,
 REML = FALSE)
 summary(Norm3)

Test the significance of the random slope

To test the significance of a random slope just compare models with and without the random slope term

 anova(Norm2, Norm3)

Exercise 3: multilevel modeling

Use the dataset, bh1996: srcR[]{data(bh1996, package=”multilevel”)}

From the data documentation:

Variables are Cohesion (COHES), Leadership Climate (LEAD), Well-Being (WBEING) and Work Hours (HRS). Each of these variables has two variants - a group mean version that replicates each group mean for every individual, and a within-group version where the group mean is subtracted from each individual response. The group mean version is designated with a G. (e.g., G.HRS), and the within-group version is designated with a W. (e.g., W.HRS).

		Create a null model predicting wellbeing (“WBEING”)

		Calculate the ICC for your null model

		Run a second multi-level model that adds two individual-level predictors, average number of hours worked (“HRS”) and leadership skills (“LEAD”) to the model and interpret your output.

		Now, add a random effect of average number of hours worked (“HRS”) to the model and interpret your output. Test the significance of this random term.

Exercise solutions

Exercise 0 prototype

Use the states.rds data set.

 states <- readRDS("dataSets/states.rds")

Fit a model predicting energy consumed per capita (energy) from the percentage of residents living in metropolitan areas (metro). Be sure to

		[@1] Examine/plot the data before fitting the model

 states.en.met <- subset(states, select = c("metro", "energy"))
 summary(states.en.met)
 plot(states.en.met)
 cor(states.en.met, use="pairwise")

		[@2] Print and interpret the model summary

 mod.en.met <- lm(energy ~ metro, data = states)
 summary(mod.en.met)

		[@3] plot the model to look for deviations from modeling assumptions

 plot(mod.en.met)

Select one or more additional predictors to add to your model and repeat steps 1-3. Is this model significantly better than the model with metro as the only predictor?

 states.en.met.pop.wst <- subset(states, select = c("energy", "metro", "pop", "waste"))
 summary(states.en.met.pop.wst)
 plot(states.en.met.pop.wst)
 cor(states.en.met.pop.wst, use = "pairwise")
 mod.en.met.pop.waste <- lm(energy ~ metro + pop + waste, data = states)
 summary(mod.en.met.pop.waste)
 anova(mod.en.met, mod.en.met.pop.waste)

Exercise 1: prototype

Use the states data set.

		Add on to the regression equation that you created in exercise 1 by generating an interaction term and testing the interaction.

 mod.en.metro.by.waste <- lm(energy ~ metro * waste, data = states)

		Try adding a region to the model. Are there significant differences across the four regions?

 mod.en.region <- lm(energy ~ metro * waste + region, data = states)
 anova(mod.en.region)

Exercise 2 prototype

Use the NH11 data set that we loaded earlier. Note that the data is not perfectly clean and ready to be modeled. You will need to clean up at least some of the variables before fitting the model.

		[@1] Use glm to conduct a logistic regression to predict ever worked (everwrk) using age (agep) and marital status (rmaritl).

 nh11.wrk.age.mar <- subset(NH11, select = c("everwrk", "age_p", "r_maritl"))
 summary(nh11.wrk.age.mar)
 NH11 <- transform(NH11,
 everwrk = factor(everwrk,
 levels = c("1 Yes", "2 No")),
 r_maritl = droplevels(r_maritl))

 mod.wk.age.mar <- glm(everwrk ~ age_p + r_maritl, data = NH11,
 family = "binomial")

 summary(mod.wk.age.mar)

		[@2] Predict the probability of working for each level of marital status.

 library(effects)
 data.frame(Effect("r_maritl", mod.wk.age.mar))

Exercise 3 prototype

Use the dataset, bh1996:

 data(bh1996, package="multilevel")

From the data documentation:

Variables are Cohesion (COHES), Leadership Climate (LEAD), Well-Being (WBEING) and Work Hours (HRS). Each of these variables has two variants - a group mean version that replicates each group mean for every individual, and a within-group version where the group mean is subtracted from each individual response. The group mean version is designated with a G. (e.g., G.HRS), and the within-group version is designated with a W. (e.g., W.HRS).

Note that the group identifier is named “GRP”.

		[@1] Create a null model predicting wellbeing (“WBEING”)

 library(lme4)
 mod.grp0 <- lmer(WBEING ~ 1 + (1 | GRP), data = bh1996)
 summary(mod.grp0)

`> library(lme4)

mod.grp0 <- lmer(WBEING ~ 1 + (1 | GRP), data ` bh1996) >

 summary(mod.grp0) Linear mixed model fit by REML [‘lmerMod’] Formula: WBEING ~ 1 + (1 | GRP) Data: bh1996

REML criterion at convergence: 19347

Scaled residuals: Min 1Q Median 3Q Max -3.322 -0.648 0.031 0.718 2.667

Random effects: Groups Name Variance Std.Dev. GRP (Intercept) 0.0358 0.189 Residual 0.7895 0.889 Number of obs: 7382, groups: GRP, 99

Fixed effects: Estimate Std. Error t value (Intercept) 2.7743 0.0222 125

>

 2. [@2] Calculate the ICC for your null model ~ICC .0358/(.0358 + .7895) = .04~

		[@3] Run a second multi-level model that adds two individual-level predictors, average number of hours worked (“HRS”) and leadership skills (“LEAD”) to the model and interpret your output.

 mod.grp1 <- lmer(WBEING ~ HRS + LEAD + (1 | GRP), data = bh1996)
 summary(mod.grp1)

		[@4] Now, add a random effect of average number of hours worked (“HRS”) to the model and interpret your output. Test the significance of this random term.

 mod.grp2 <- lmer(WBEING ~ HRS + LEAD + (1 + HRS | GRP), data = bh1996)
 anova(mod.grp1, mod.grp2)

Wrap-up

Help us make this workshop better!

		Please take a moment to fill out a very short

feedback form

		These workshops exist for you – tell us what you need!

		http://tinyurl.com/RstatisticsFeedback

Additional resources

		IQSS workshops: http://projects.iq.harvard.edu/rtc/filter_by/workshops

		IQSS statistical consulting: http://dss.iq.harvard.edu

		Zelig
		Website: http://gking.harvard.edu/zelig

		Documentation: http://r.iq.harvard.edu/docs/zelig.pdf

		Ameila
		Website: http://gking.harvard.edu/Amelia/

		Documetation: http://r.iq.harvard.edu/docs/amelia/amelia.pdf

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

